
Forward Progress on GPU
Concurrency

Alastair Donaldson, Imperial College London
Slides and accompanying code prepared jointly with Tyler Sorensen

Accompanying paper written jointly with Jeroen Ketema, Tyler Sorensen and
John Wickerson

Agenda

• Overview of key concepts in OpenCL – a major GPU programming
model

• Implementing a reduction in OpenCL, showcasing pitfalls

• Demo of GPUVerify – static data race detection for OpenCL

• Discussion of how to achieve global synchronization in OpenCL

• Problems with global synchronization due to unfair scheduling

• Discovery protocol to enable portable global synchronization

Threads and blocks

An OpenCL kernel is executed by a set of threads

The threads are sub-divided into workgroups of equal size

0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 1 1 1 1 2 2 2 2

0 1 2 3 4 5 6 7 8 9 10 11

local id:

group id:

global id:

Example: 3 blocks, 4 threads per block

global id = group size x group id + local id

Memory

Each thread has access to its own private memory

Threads in a workgroup share local memory

All threads share global memory

0 1 2 3 4 5 6 7 8 9 10 11

Local memory Local memory Local memory

Global memory

Barrier synchronization

T0 T1 T2 T3 T4 T5 T6 T7

Workgroup 0 Workgroup 1

Barrier

Barrier synchronization

T0 T1 T2 T3 T4 T5 T6 T7

Workgroup 0 Workgroup 1

Barrier

Barrier synchronization

T0 T1 T2 T3 T4 T5 T6 T7

Workgroup 0 Workgroup 1

Barrier

Safe to read data written
before the barrier

Global barrier?

T0 T1 T2 T3 T4 T5 T6 T7

Workgroup 0 Workgroup 1

Global barrier

Global barrier?

T0 T1 T2 T3 T4 T5 T6 T7

Workgroup 0 Workgroup 1

Global barrier

Global barrier?

T0 T1 T2 T3 T4 T5 T6 T7

Workgroup 0 Workgroup 1

Global barrier

Safe to read data written before the barrier

Useful construct,
but not provided
as a primitive in
OpenCL – more
later!

Atomics

OpenCL 2.0 provides atomic operations for fine-grained communication
between threads

The OpenCL memory model is relaxed: non sequentially consistent
behaviours are allowed

Data race

Two memory accesses race if and only if:
- They are issued by different threads
- They access a common memory location
- At least one access is non-atomic
- At least one access modifies the memory location
- No synchronization operation separates the accesses

Synchronization can be via a barrier, or through synchronizing atomics

Let’s program a reduction in OpenCL

reduce([x1, x2, …, xn]) = x1 + x2 + … + xn

Reduction
example
with a single
workgroup

0 1 2 3threads:

0 1 2 3 4 5 6 7 8 9 10 11

+ + + +

data:

12 15 18 21partial sums:

30 36partial sums:

66result:

0 1 2 3threads:

0 1 2 3threads:

+ +

+

GPUVerify:
static data
race analysis
for GPU
kernels

To learn more about GPUVerify:

The original paper:
• Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer, Paul

Thomson: GPUVerify: a verifier for GPU kernels. OOPSLA 2012: 113-132
Extended journal version:
• Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz

Qadeer, Paul Thomson, John Wickerson: The Design and Implementation
of a Verification Technique for GPU Kernels. ACM Trans. Program. Lang.
Syst. 37(3): 10:1-10:49 (2015)

Tool paper on engineering details, including optimizations:
• Ethel Bardsley, Adam Betts, Nathan Chong, Peter Collingbourne, Pantazis

Deligiannis, Alastair F. Donaldson, Jeroen Ketema, Daniel Liew, Shaz
Qadeer: Engineering a Static Verification Tool for GPU Kernels. CAV 2014:
226-242

Global barrier motivation: graph traversal

• Frontier based graph traversal framework

base

18

Global barrier motivation: graph traversal

• Frontier based graph traversal framework

base

frontier 1

19

Global barrier motivation: graph traversal

• Frontier based graph traversal framework

base

frontier 1

frontier 2

20

Global barrier motivation: graph traversal

• Frontier based graph traversal framework

base

frontier 1

frontier 2

… frontier n

21

Global barrier motivation: graph traversal

• Frontier based graph traversal framework

base

frontier 1

frontier 2

… frontier n

Dependencies!!

22

Global barrier motivation: graph traversal

• Frontier based graph traversal framework

base

frontier 1

frontier 2

… frontier n

Dependencies!!

How to achieve global synchronization?

23

Global barrier motivation: graph traversal

• Frontier based graph traversal framework

base

frontier 1

frontier 2

… frontier n

Dependencies!!

How to achieve global synchronization?

without global barrier,
need to call GPU n times

GPUCPU

24

Global barrier motivation: graph traversal

• Frontier based graph traversal framework

base

frontier 1

frontier 2

… frontier n

Dependencies!!

How to achieve global synchronization?

GPUCPU

with global barrier, can use
blocking synchronization

25

Barrier implementation

• Start with an implementation from Xiao and Feng (2010)

• Written in CUDA (ported to OpenCL)

• No formal memory consistency properties

T1 T0 T0 T1 T0 T1

Master WorkgroupSlave Workgroup 0 Slave Workgroup 1

T1 T0 T0 T1 T0 T1

Master WorkgroupSlave Workgroup 0 Slave Workgroup 1

barrier barrier

spin(x0 != 1) spin(x1 != 1)

T1 T0 T0 T1 T0 T1

Master WorkgroupSlave Workgroup 0 Slave Workgroup 1

barrier barrier

barrier barrier

spin(x0 != 1) spin(x1 != 1)

T1 T0 T0 T1 T0 T1

Master WorkgroupSlave Workgroup 0 Slave Workgroup 1

barrier barrier

barrier barrier

x0 = 1 x1 = 1
spin(x0 != 1) spin(x1 != 1)

T1 T0 T0 T1 T0 T1

Master WorkgroupSlave Workgroup 0 Slave Workgroup 1

barrier barrier

barrier barrier

spin(x0 != 1) spin(x1 != 1)

barrier

spin(x0 != 0) spin(x1 != 0)

x0 = 1 x1 = 1

T1 T0 T0 T1 T0 T1

Master WorkgroupSlave Workgroup 0 Slave Workgroup 1

barrier barrier

barrier barrier

spin(x0 != 1) spin(x1 != 1)

barrier

x0 = 0 x1 = 0
spin(x0 != 0) spin(x1 != 0)

x0 = 1 x1 = 1

barrier

spin(x0 != 0)

barrier

barrier

spin(x0 != 1)

T1 T0

spin(x1 != 1)

T0 T1

barrier

spin(x1 != 0)

barrier

T0 T1

Master WorkgroupSlave Workgroup 0 Slave Workgroup 1

x0 = 0 x1 = 0

x0 = 1 x1 = 1

spin(x0 != 0)

spin(x0 != 1)

T1 T0

spin(x1 != 1)

T0 T1

spin(x1 != 0)

T0 T1

Master WorkgroupSlave Workgroup 0 Slave Workgroup 1

x0 = 0 x1 = 0

x0 = 1 x1 = 1

Let’s implement this

Barrier memory consistency

• Device release-acquire rule

Racq y = 1Wrel y = 1

T0 T1

T0 and T1 in different
workgroups

spin(x0 != 0)

spin(x0 != 1)

T1 T0

spin(x1 != 1)

T0 T1

spin(x1 != 0)

T0 T1

Master WorkgroupSlave Workgroup 0 Slave Workgroup 1

x0 = 0 x1 = 0

x0 = 1 x1 = 1

spin(x0 != 0)

spin(x0 != 1)

T1 T0

spin(x1 != 1)

T0 T1

spin(x1 != 0)

T0 T1

Master WorkgroupSlave Workgroup 0 Slave Workgroup 1

Wrel x0 = 0 Wrel x1 = 0

Wrel x0 = 1 Wrel x1 = 1

spin(Racqx0 != 0)

spin(Racqx0 != 1)

T1 T0

spin(Racqx1 != 1)

T0 T1

spin(Racqx1 != 0)

T0 T1

Master WorkgroupSlave Workgroup 0 Slave Workgroup 1

Wrel x0 = 0 Wrel x1 = 0

Wrel x0 = 1 Wrel x1 = 1

spin(Racqx0 != 0)

spin(Racqx0 != 1)

T1 T0

spin(Racqx1 != 1)

T0 T1

spin(Racqx1 != 0)

T0 T1

Master WorkgroupSlave Workgroup 0 Slave Workgroup 1

Wrel x0 = 0 Wrel x1 = 0

Wrel x0 = 1 Wrel x1 = 1

Let’s implement this

Problem with global barrier

• Global synchronization leads to deadlock if too many workgroups
participate in barrier

Occupancy bound execution

CU CU CU

w0

workgroup queue

Program with 5 workgroups w1w2

GPU with 3 compute units

w4w5

Occupancy bound execution

CU CU CU

w0

workgroup queue

Program with 5 workgroups w1w2

GPU with 3 compute units

w4w5

Occupancy bound execution

CU CU CU

w0

workgroup queue

Program with 5 workgroups

w2

GPU with 3 compute units

w4w5 w4

w1

Occupancy bound execution

CU CU CU

w0

workgroup queue

Program with 5 workgroups

w1

w2 GPU with 3 compute units

w4w5 w4

finished workgroups

Occupancy bound execution

CU CU CU

w0

workgroup queue

Program with 5 workgroups

w1

w2 GPU with 3 compute units

w4

w5 w4

finished workgroups

Occupancy bound execution

CU CU CU

w0

workgroup queue

Program with 5 workgroups

w1

w2 GPU with 3 compute units

w4

w5 w4

finished workgroups

Occupancy bound execution

CU CU CU

w0

workgroup queue

Program with 5 workgroups

w1

w2 GPU with 3 compute units

w4w5

w4

finished workgroups

Occupancy bound execution

CU CU CU

w0

workgroup queue

Program with 5 workgroups

w1w2 GPU with 3 compute unitsw4w5

finished workgroups

w4

Finished!

Occupancy bound execution

CU CU CU

w0

workgroup queue

Program with 5 workgroups w1w2

GPU with 3 compute units

w4w5

Occupancy bound execution

CU CU CU

w0

workgroup queue

Program with 5 workgroups w1w2

GPU with 3 compute units

w4w5

Occupancy bound execution

CU CU CU

w0

workgroup queue

Program with 5 workgroups

w2

GPU with 3 compute units

w4w5 w4

w1
Cannot synchronise with

workgroups in queue

Barrier gives deadlock!

Occupancy bound execution

CU CU CU

w0

workgroup queue

Program with 5 workgroups

w2

GPU with 3 compute units

w4w5 w4

w1
Barrier is possible if

we know the occupancy

Occupancy bound execution

• Launch as many workgroups as compute units?

Occupancy bound execution

• Launch as many workgroups as compute units?

Occupancy bound execution

• Launch as many workgroups as compute units?

CU

w0

workgroup queue

Program with 5 workgroups w1w2

GPU with 3 compute units

w4w5

CU CU

Occupancy bound execution

• Launch as many workgroups as compute units?

CU CU CU

w0

workgroup queue

Program with 5 workgroups

w1 w2

GPU with 3 compute units

w4 w5

w4

Depending on resources, multiple wgs
can execute on CU

Recall of occupancy discovery

Chip Compute Units Occupancy Bound

GTX 980 16

Quadro K500 12

Iris 6100 47

HD 5500 24

Radeon R9 28

Radeon R7 8

T628-4 4

T628-2 2

Recall of occupancy discovery

Chip Compute Units Occupancy Bound

GTX 980 16 32

Quadro K500 12 12

Iris 6100 47 6

HD 5500 24 3

Radeon R9 28 48

Radeon R7 8 16

T628-4 4 4

T628-2 2 2

Our approach (scheduling)

w0

workgroup queue

Program w1w2

GPU with 3 compute units

w4w5

w6w7w8w9wa

CU CU CU

Our approach (scheduling)

CU CU CU

w0

workgroup queue

Program w1

w2

GPU with 3 compute units

w4

w5

w6

w7

w8

w9 wa

w4

Our approach (scheduling)

CU CU CU

w0

workgroup queue

Program w1

w2

GPU with 3 compute units

w4

w5

w6

w7

w8

w9 wa

w4

Dynamically estimate occupancy

Our approach (scheduling)

CU CU CU

w0

workgroup queue

Program w1

w2

GPU with 3 compute units

w4

w5

w6

w7

w8

w9 wa

w4

Dynamically estimate occupancy

Finding occupant workgroups

• Executed by 1 thread per workgroup

• Two phases:

• Polling

• Closing

Finding occupant workgroups

• Executed by 1 thread per workgroup

• Three global variables:

• Mutex: m

• Bool poll flag: poll_open

• Integer counter: count

Finding occupant workgroups

• Executed by 1 thread per workgroup

• Three global variables:

• Mutex: m

• Bool poll flag: poll_open

• Integer counter: count

lock(m)

if (poll_open) {

count++;

unlock(m);

}

else {

unlock(m);

return false;

}

lock(m)

if (poll_open) {

poll_open = false

}

unlock(m)

return true;

Finding occupant workgroups

• Executed by 1 thread per workgroup

• Three global variables:

• Mutex: m

• Bool poll flag: poll_open

• Integer counter: count

lock(m)

if (poll_open) {

count++;

unlock(m);

}

else {

unlock(m);

return false;

}

lock(m)

if (poll_open) {

poll_open = false

}

unlock(m)

return true;

Polling phase

Finding occupant workgroups

• Executed by 1 thread per workgroup

• Three global variables:

• Mutex: m

• Bool poll flag: poll_open

• Integer counter: count

lock(m)

if (poll_open) {

count++;

unlock(m);

}

else {

unlock(m);

return false;

}

lock(m)

if (poll_open) {

poll_open = false

}

unlock(m)

return true;

Polling phase

Closing phase

Finding occupant workgroups

• Executed by 1 thread per workgroup

• Three global variables:

• Mutex: m

• Bool poll flag: poll_open

• Integer counter: count

lock(m)

if (poll_open) {

count++;

unlock(m);

}

else {

unlock(m);

return false;

}

lock(m)

if (poll_open) {

poll_open = false

}

unlock(m)

return true;

Finding occupant workgroups

• Executed by 1 thread per workgroup

• Three global variables:

• Mutex: m

• Bool poll flag: poll_open

• Integer counter: count

lock(m)

if (poll_open) {

count++;

unlock(m);

}

else {

unlock(m);

return false;

}

lock(m)

if (poll_open) {

poll_open = false

}

unlock(m)

return true;

Let’s implement the discovery protocol

Let’s implement a portable barrier using the
discovery protocol

Further reading

Our proposal for a portable inter-workgroup barrier:

• Tyler Sorensen, Alastair F. Donaldson, Mark Batty, Ganesh
Gopalakrishnan, Zvonimir Rakamaric: Portable inter-workgroup
barrier synchronisation for GPUs. OOPSLA 2016: 39-58

Our proposal for enabling fair scheduling on GPUs:

• Tyler Sorensen, Hugues Evrard, Alastair F. Donaldson: Cooperative
kernels: GPU multitasking for blocking algorithms. ESEC/SIGSOFT FSE
2017: 431-441

Summary

• OpenCL provides low-level control over GPU architectural features

• Traditional hierarchical execution model uses barriers to synchronize
inside workgroups, with no communication between workgroups

• OpenCL 2.0 provides atomic operations and memory model to
facilitate inter workgroup communication

• But the OpenCL execution model provides few guarantees – makes it
hard to build reliable concurrency primitives such as barriers

Current research directions

• Theoretical study of execution model hierarchy

• Empirical study of execution model characteristics provided by
current GPUs

• Cooperative kernels for GPU multi-tasking (presented at ESEC/FSE
tomorrow)

