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Agenda

• Overview of key concepts in OpenCL – a major GPU programming 
model

• Implementing a reduction in OpenCL, showcasing pitfalls

• Demo of GPUVerify – static data race detection for OpenCL

• Discussion of how to achieve global synchronization in OpenCL

• Problems with global synchronization due to unfair scheduling

• Discovery protocol to enable portable global synchronization



Threads and blocks

An OpenCL kernel is executed by a set of threads

The threads are sub-divided into workgroups of equal size
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local id:

group id:

global id:

Example: 3 blocks, 4 threads per block

global id = group size x group id + local id



Memory

Each thread has access to its own private memory

Threads in a workgroup share local memory

All threads share global memory

0 1 2 3 4 5 6 7 8 9 10 11

Local memory Local memory Local memory

Global memory
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Global barrier?

T0 T1 T2 T3 T4 T5 T6 T7

Workgroup 0 Workgroup 1

Global barrier

Safe to read data written before the barrier

Useful construct, 
but not provided 
as a primitive in 
OpenCL – more 
later!



Atomics

OpenCL 2.0 provides atomic operations for fine-grained communication 
between threads

The OpenCL memory model is relaxed: non sequentially consistent 
behaviours are allowed



Data race

Two memory accesses race if and only if:
- They are issued by different threads
- They access a common memory location
- At least one access is non-atomic
- At least one access modifies the memory location
- No synchronization operation separates the accesses

Synchronization can be via a barrier, or through synchronizing atomics



Let’s program a reduction in OpenCL

reduce([x1, x2, …, xn]) = x1 + x2 + … + xn



Reduction 
example 
with a single 
workgroup

0 1 2 3threads:

0 1 2 3 4 5 6 7 8 9 10 11

+ + + +

data:

12 15 18 21partial sums:

30 36partial sums:

66result:

0 1 2 3threads:

0 1 2 3threads:

+ +

+



GPUVerify: 
static data 
race analysis 
for GPU 
kernels



To learn more about GPUVerify:

The original paper:
• Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer, Paul 

Thomson: GPUVerify: a verifier for GPU kernels. OOPSLA 2012: 113-132
Extended journal version:
• Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz

Qadeer, Paul Thomson, John Wickerson:  The Design and Implementation 
of a Verification Technique for GPU Kernels. ACM Trans. Program. Lang. 
Syst. 37(3): 10:1-10:49 (2015)

Tool paper on engineering details, including optimizations:
• Ethel Bardsley, Adam Betts, Nathan Chong, Peter Collingbourne, Pantazis

Deligiannis, Alastair F. Donaldson, Jeroen Ketema, Daniel Liew, Shaz
Qadeer: Engineering a Static Verification Tool for GPU Kernels. CAV 2014: 
226-242
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• Frontier based graph traversal framework
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… frontier n

Dependencies!!

How to achieve global synchronization?

without global barrier,
need to call GPU n times

GPUCPU
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Global barrier motivation: graph traversal

• Frontier based graph traversal framework

base

frontier 1

frontier 2

… frontier n

Dependencies!!

How to achieve global synchronization?

GPUCPU

with global barrier, can use 
blocking synchronization
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Barrier implementation

• Start with an implementation from Xiao and Feng (2010)

• Written in CUDA (ported to OpenCL)

• No formal memory consistency properties
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Let’s implement this



Barrier memory consistency

• Device release-acquire rule

Racq y = 1Wrel y = 1

T0 T1

T0 and T1 in different 
workgroups
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Let’s implement this



Problem with global barrier

• Global synchronization leads to deadlock if too many workgroups 
participate in barrier
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Occupancy bound execution

CU CU CU

w0

workgroup queue

Program with 5 workgroups

w2

GPU with 3 compute units

w4w5 w4

w1
Cannot synchronise with

workgroups in queue

Barrier gives deadlock!



Occupancy bound execution

CU CU CU

w0

workgroup queue

Program with 5 workgroups

w2

GPU with 3 compute units

w4w5 w4

w1
Barrier is possible if 

we know the occupancy
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Occupancy bound execution

• Launch as many workgroups as compute units? 

CU CU CU

w0

workgroup queue

Program with 5 workgroups

w1 w2

GPU with 3 compute units

w4 w5

w4

Depending on resources, multiple wgs
can execute on CU



Recall of occupancy discovery

Chip Compute Units Occupancy Bound

GTX 980 16

Quadro K500 12

Iris 6100 47

HD 5500 24

Radeon R9 28

Radeon R7 8

T628-4 4

T628-2 2



Recall of occupancy discovery

Chip Compute Units Occupancy Bound

GTX 980 16 32

Quadro K500 12 12

Iris 6100 47 6

HD 5500 24 3

Radeon R9 28 48

Radeon R7 8 16

T628-4 4 4

T628-2 2 2
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CU CU CU

w0

workgroup queue

Program w1

w2

GPU with 3 compute units

w4

w5

w6

w7

w8

w9 wa

w4

Dynamically estimate occupancy



Finding occupant workgroups

• Executed by 1 thread per workgroup

• Two phases:

• Polling

• Closing
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Let’s implement a portable barrier using the 
discovery protocol



Further reading

Our proposal for a portable inter-workgroup barrier:

• Tyler Sorensen, Alastair F. Donaldson, Mark Batty, Ganesh 
Gopalakrishnan, Zvonimir Rakamaric: Portable inter-workgroup 
barrier synchronisation for GPUs. OOPSLA 2016: 39-58

Our proposal for enabling fair scheduling on GPUs:

• Tyler Sorensen, Hugues Evrard, Alastair F. Donaldson: Cooperative 
kernels: GPU multitasking for blocking algorithms. ESEC/SIGSOFT FSE 
2017: 431-441



Summary

• OpenCL provides low-level control over GPU architectural features

• Traditional hierarchical execution model uses barriers to synchronize 
inside workgroups, with no communication between workgroups

• OpenCL 2.0 provides atomic operations and memory model to 
facilitate inter workgroup communication

• But the OpenCL execution model provides few guarantees – makes it 
hard to build reliable concurrency primitives such as barriers



Current research directions

• Theoretical study of execution model hierarchy

• Empirical study of execution model characteristics provided by 
current GPUs

• Cooperative kernels for GPU multi-tasking (presented at ESEC/FSE 
tomorrow)


