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programming, Bayesian optimization, data
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What is probabilistic
programming?
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fit the model to the data.

a generic inference algo.
of the language
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Bayesian generative model

®
e

S ~ normal (0, 2)

b ~ normal (0, 6)

f(X) =s*x + b

Y ~ normal(f(i1), 0.5)
where 1 =0 .. 6

Q: posterior of (s,b) given yo=0.6,
.y Y6=8.47
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p(Yo, --, Y6)

P(s, b | yo, .., ye) =
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Samples from posterior
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Underfit?




Expressive prob. PLs
enable one to explore
advanced models easily.
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. Sample a string.
2. Generate an image using
complex |VM code.

Le, Baydin,VWood [201 6]




Captcha breaking

Anglican’s inference engine
based on neural nets

w18 5

. Sample a string.
2. Generate an image using
complex JVM code.

Le, Baydin,VWood [201 6]
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Captcha breaking

.1 Neural net as a part
| of inference engine.

_— . aydin,wood [20 | 6]



Captcha breaking

.1 Neural net as a part
| of inference engine.

Approximates the
inverse of the
Captcha program.

_— . aydin,wood [20 | 6]
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|. Sample a 3D object.
2. Score the object. Ritchie, Mildenhall, Goodman,

Used stochastic future. Hanrahan [SIGGRAPH'I5]




Procedural modelling

=

V WebPPL’s inference
' P |engine that exploits

stochastic future
|. Sample a 3D object.
2. Score the object. Ritchie, Mildenhall, Goodman,

Used stochastic future. Hanrahan [SIGGRAPH'I5]



Why might QONFEST
audience be interested!?



Reason |:
Unusual use of
concurrency.



An inference algo. for a prob. PL can be viewed
as a non-standard approximate interpreter.

Sequential Monte Carlo (in short SMC) is a
popular algo. with many variants.

SMC runs sequential probabilistic programs
concurrently with added synchronisation.



(let [x (sample (normal 0 2))
a (observe (normal x 1) 2.1)
y (sample (normal (* 0.9 x) 2))
b (observe (normal y 1) 1.8)]

® ©




(let [x (sample (normal 0 2))
a (observe (normal x 1) 2.1)
y (sample (normal (* 0.9 x) 2))
b (observe (normal y 1) 1.8)]
[x y]1)

® ©




(let [x (sample (normal 0 2))
a (observe (normal x 1) 2.1)
y (sample (normal (* 0.9 x) 2))
b (observe (normal y 1) 1.8)]

© ©




(let [x (sample (normal 0 2))
a (observe (normal x 1) 2.1)
y (sample (normal (* 0.9 x) 2))

b (observe (normal y 1) 1.8)]
[x y1)

® ©




(let [x (sample (normal 0 2))
a (observe (normal x 1) 2.1)
y (sample (normal (* 0.9 x) 2))
b (observe (normal y 1) 1.8)]

® ©




(let [x (sample (normal 0 2))
a (observe (normal x 1) 2.1)
y (sample (normal (* 0.9 x) 2))
b (observe (normal y 1) 1.8)]

® ©




(let [x (sample (normal 0 2))
a (observe (normal x 1) 2.1)
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® ©

Goal: Generate samples from
posterior p(x,y | a=2.1,b=1.8).
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(let [x (sample (normal 0 2))
a (observe (normal x 1) 2.1)

y (sample (normal (* 0.9 x) 2))

b (observe (normal y 1) 1.8)
[x y1)

]
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(let [x (sample (normal 0 2))
a (observe (normal x 1) 2.1)
y (sample (normal (* 0.9 x) 2))
b (observe (normal y 1) 1.8)]
[x y1)

Particle
Gibbs



Inference algorithms for Anglican

Method
importance

smc
pcascade

pgibbs
pimh
pgas
1pmcmc
Lmh
rmh

almh

palmh

pLlmh
bamc

siman

Type
1S
1S

1S

PMCMC
PMCMC
PMCMC
PMCMC
MCMC
MCMC

MCMC

MCMC

MCMC
MAP
MAP

Description
Importance sampling (likelihood weighting)
Sequential Monte Carlo

Particle cascade (asynchronous sequential Monte
Carlo)

Particle Gibbs (iterated conditional SMC)
Particle independent Metropolis-Hastings
Particle Gibbs with ancestor sampling
Interacting particle Markov chain Monte Carlo
Lightweight Metropolis-Hastings
Random-walk Lightweight Metropolis-Hastings
Adaptive scheduling lightweight Metropolis-
Hastings

Parallelised adaptive scheduling lightweight
Metropolis-Hastings

Parallelised lightweight Metropolis-Hastings
Bayesian Ascent Monte Carlo

MAP estimation via simulated annealing




Inference algorithms for Anglican

Method

importance

smc
pcascade

pgibbs
pimh
pgas

! 1pmemc |
 1mh

rmh

almh

palmh

pLlmh
bamc

siman

Type

IS P
o —

1S

PMCMC
PMCMC
PMCMC

‘PMCMC:M
MCMC

MCMC

MCMC

MCMC

MCMC
MAP
MAP

" Lightweight Metropol-

Description
Importance samplmg (Iukellhood welghtmg)
Sequentlal Monte Carlo

Particle cascade (asynchronous sequential Monte
Carlo)

Particle Gibbs (iterated conditional SMC)
Particle independent Metropolis-Hastings
Particle Gibbs with ancestor sampling
Interacting partlcle Markov chaln Monte Carlo

Random-walk Lightw 6 variants of SMC

Adaptive scheduling lightweight Metropolis-
Hastings

Parallelised adaptive scheduling lightweight
Metropolis-Hastings

Parallelised lightweight Metropolis-Hastings
Bayesian Ascent Monte Carlo

MAP estimation via simulated annealing




Key question

How to reason about prob. programs under such
concurrent non-standard approximate semantics?



Concrete question |:
Correctness

[Q] Are these algo. correct for prob. programs?

Usually proved for R or simple cases.
Challenge |: Expressiveness of prob. PLs.

Challenge 2: Subtle notion of correctness.



Concrete question |:
Correctness

[Q] Are these algo. correct for prob. programs!?

Usually proved for R or simple cases.
Challenge |: Expressiveness of prob. PLs.

Challenge 2: Subtle notion of correctness.

Seq. Monte Carlo gives a right answer (weak
convergence) as the # of threads goes to .




Concrete question 2:
Refinement

Programs may be semantically equivalent but
some are easy for these algo., and some hard.

[Q] Capture this difference by an algo.-specific
refinement C. Develop proof rules for C.
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Programs may be semantically equivalent but
some are easy for these algo., and some hard.

[Q] Capture this difference by an algo.-specific
refinement C. Develop proof rules for C.

(let [x (sample (normal 0 2))
a (observe (normal x 1) 2.1)
y (sample (normal (* 0.9 x) 2))
b (observe (normal y 1) 1.8)]
[x y]1)
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Concrete question 2:
Refinement

Programs may be semantically equivalent but
some are easy for these algo., and some hard.

[Q] Capture this difference by an algo.-specific
refinement C. Develop proof rules for C.

(let [x (sample (normal 0 2)) ) Prggz
a (observe (normal x 1) 2.1) /T
y (sample (normal (* 0.9 x) 2)) 4%
b (observe (normal y 1) 1.8)]
[x y]1)




Prog|

Concrete question 2:
Refinement

Programs may be semantically equivalent but
some are easy for these algo., and some hard.

[Q] Capture this difference by an algo.-specific
refinement C. Develop proof rules for C.

(let [x (sample (normal 0 2)) ) Prggz
a (observe (normal x 1) 2.1) =T
y (sample (normal (* 0.9 x) 2)) 4%
b (observe (normal y 1) 1.8)]
[x y]1)

Prog2 C Progl



Concrete question 3:
Good sublanguages

[Q1] Find a sublanguage that drops the time
complexity of an inference algorithm.

[Q2] Find a sublanguage that allows a GPU-
based implementation of an inference algo.



Reason 2:
Probabilistic PLs raise
new semantic issues.



(Tet [F (fn []
(let [s (sample (normal 0 2))
b (sample (normal 0 6))]
(fn [x] (+ (* s x) b))))

f (add-change-points F 0 6)]
(observe (normal (f 0) .5) .6)
(observe (normal (f 1) .5) .7)
(observe (normal (f 2) .5) 1.2)
(observe (normal (f 3) .5) 3.2)
(observe (normal (f 4) .5) 6.8)
(observe (normal (f 5) .5) 8.2)
(observe (normal (f 6) .5) 8.4)

)



(let [F (fn

(let [s (sample (normal 0 2))
b (sample (normal 0 6))]

]

(fn [x] (+ (* s x) b))))

f (add-change-points F 0 6)]
(observe (normal (f 0) .5) .6)
(observe (normal (f 1) .5) .7)
(observe (normal (f 2) .5) 1.2)
(observe (normal (f 3) .5) 3.2)
(observe (normal (f 4) .5) 6.8)
(observe (normal (f 5) .5) 8.2)
(observe (normal (f 6) .5) 8.4)

)

|. Higher-order functions.




Issue |:
Higher-order functions

Measure theory provides a standard foundation
of probability theory.

But it doesn’t support HO fns well.
ev:(R->mR) xR = R, ev(fx) = f(x).

[Aumann 61] ev is not measurable no matter
which T-algebra is used for R—nR.



(let [F (fn

(let [s (sample (normal 0 2))
b (sample (normal 0 6))]

(fn [x] (+ (* s x) b))))

f (add-change-points F 0 6)]
(observe (normal (f 0) .5) .6)
(observe (normal (f 1) .5) .7)
(observe (normal (f 2) .5) 1.2)
(observe (normal (f 3) .5) 3.2)
(observe (normal (f 4) .5) 6.8)
(observe (normal (f 5) .5) 8.2)
(observe (normal (f 6) .5) 8.4)

)

]

|. Higher-order functions.




(let [F (fn

[

(let [s (sample (normal 0 2))
b (sample (normal 0 6))]

(fn [x] (+ (* s x)

f (add-change-points F O
.5)
.5)
.5)
.5)
.5)
.5)
.5)

(observe
(observe
(observe
(observe
(observe
(observe
(observe

)

(normal
(normal
(normal
(normal
(normal
(normal
(normal

(f 0)
(f 1)
(f 2)
(f 3)
(f 4)
(f 5)
(f 6)

b))))
6) ]
.0)
.7)
1.2)
3.2)
6.8)
8.2)
8.4)

|. Higher-order functions.
2. Conditioning and prog. egs.



Issue 2:
Conditioning and prog. egs
|[ e:real ]] c M(R)
® M should model prob. computations.
® M should validate equations from statistics.

® M should be commutative.

® Difficult to find such M due to conditioning.
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Issue 2:
Conditioning and prog. egs

nearly-finite measures
|[ e:real ]] e M(R)nonfinite measdfes

® M should model prob. computations. |
® M should validate equations from statistics
® M should be commutative. s

e Difficult to find such M due to conditioning.



Issue 3:
Meta-programming features

My ML colleagues are very much interested in
probabilistic models for programs.

They express such models using quote & eval.

[Q] How to interpret meta-programming
features in Anglican/Church/Venture!?



My research™
Address issues | &2 with
Quasi-Borel spaces.

* based on Heunen et al’s LICS’ |7



Big picture |:
Extend measure theory
using category theory.



|. Higher-order fns.
2. Conditioning, prog. egs.




|. Higher-order fns.
2. Conditioning, prog. egs.
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2. Cnditioning, prog. egs.

Measp
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embedding

[Measg©P, Set]y



- — - =e - T - -
< B b - . S =

2. Cnditioning, prog. egs.

Measp

Yoneda
embedding

/\ [Measg©p, Set]

Preserves nearly
all the structures
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oning, prog. eqs.

2. Cnditi

Measp

Yoneda
embedding

MeasgoPp, Set]
[ asg, ]

Enough structure
for function types
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2. Cnditioning, prog. egs.

Measp

Yoneda
embedding

[Measg©P, Set]y
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2. Cnditioning, prog. egs.

Measg --------------comcianns > QBS
Yoneda Full subcat. of
embedding separated functors

[Measgep, Set]
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2. Cnditioning, prog. egs.

Function spaces (CCQC).

Concrete (extensional).

Measg -------------mcmmcnnannas > QBS
Yoneda Full subcat. of
embedding separated functors

[Measgep, Set]



Strong monad of
s-finite kernels

N
SFinKer
Measg ---------------------n--- > QBSD
Yoneda Full subcat. of
embedding separated functors

[Measg©p, Set]



SFinKer

Yoneda Full subcat. of
embedding separated functors

[Measg©p, Set]



Big picture 2:
Random element first.



Random element X in X



Random element X in X

x:QQ & X
® X - set of values.

® () - set of random seeds.

® Random seed generator.
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® () - set of random seeds.

® Random seed generator.
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® Random seed generator.
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Random element & in X
in measure theory

x:QQ & X
® X - set of values.

® () - set of random seeds.

® Random seed generator.

|.3C29, OC2X
2.4 :Z—[0,1]




Random element & in X
in measure theory

o : ) — X is arandom element

vl
® X - set of values. if o-!(A)e2 for all AcO

® () - set of random seeds.

® Random seed generator.

|.3C29, OC2X
2.1 :Z[0,1]
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® X - set of values.

® () - set of random seeds.

® Random seed generator.



Random element & in X
in quasi-Borel spaces

x:QQ & X
® X - set of values.

® () - set of random seeds.

® Random seed generator.



Random element & in X
in quasi-Borel spaces

X:R = X
® X - set of values.

® R - set of random seed:s.

® Random seed generator. |. R as random source

2. Borel subsets S BC2R
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Random element & in X
in quasi-Borel spaces

X:R—= X
® X - set of values.

® R - set of random seed:s.

® Random seed generator. |. R as random source

2. Borel subsets S BC2Rk
3.M C [R-X]




Random element & in X
in quasi-Borel spaces

X :R = X is a random variable

® X - set of values. T oeM

® R - set of random seed:s.

® Random seed generator. |. R as random source

2. Borel subsets SBC2R
3.M C [R->X]




® Measure theory:

® Measurable space (X, ©@C2X).

® Random element is an induced concept.
e QBS:

® Quasi-Borel space (X, MC[R—-X]).

® M is the set of random elements.



Quasi-Borel spaces

® New axiomatisation of probability theory.

® Enabled us to generalise classical results in
probability theory such as de Finetti thm.



Try probabilistic PLs

Anglican:
http://www.robots.ox.ac.uk/~fwood/anglican/

WebPPL:
http://webppl.org/



