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(Bayesian) probabilistic 
modelling of data

1. Develop a new probabilistic (generative) model.

2. Design an inference algorithm for the model.

3. Using the algo., fit the model to the data.

a generic inference algo. 
of the language

as a program

in a prob. prog. language
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f(x)  = s*x + b 
yi    ~ normal(f(i), 0.5) 
           where i = 0 .. 6 
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Bayesian generative model
s

b
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i=0..6

s     ~ normal(0, 2) 
b      ~ normal(0, 6) 
f(x)  = s*x + b 
yi    ~ normal(f(i), 0.5) 
           where i = 0 .. 6 
  
Q: posterior of (s,b) given y0=0.6, 
…, y6=8.4?



Posterior of s and b given yi's
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Expressive prob. PLs 
enable one to explore 
advanced models easily.
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(let [s (sample (normal 0 2)) 
      b (sample (normal 0 6)) 
      f (fn [x] (+ (* s x) b))] 

    (observe (normal (f 0) .5) .6) 
    (observe (normal (f 1) .5) .7) 
    (observe (normal (f 2) .5) 1.2) 
    (observe (normal (f 3) .5) 3.2) 
    (observe (normal (f 4) .5) 6.8) 
    (observe (normal (f 5) .5) 8.2) 
    (observe (normal (f 6) .5) 8.4) 

  [s b]) 
  f)
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Captcha breaking

Le, Baydin, Wood [2016]

SMKBDF

Anglican’s inference engine 
based on neural nets

1. Sample a string.
2. Generate an image using 

complex JVM code.
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Figure 1: Controlling the output of highly-variable procedural modeling programs using our Stochastically-Ordered Sequential Monte Carlo
algorithm. Here, the controls encourage volumetric similarity to a target shape (shown in black).

Abstract

We present a method for controlling the output of procedural
modeling programs using Sequential Monte Carlo (SMC). Previ-
ous probabilistic methods for controlling procedural models use
Markov Chain Monte Carlo (MCMC), which receives control feed-
back only for completely-generated models. In contrast, SMC re-
ceives feedback incrementally on incomplete models, allowing it to
reallocate computational resources and converge quickly. To handle
the many possible sequentializations of a structured, recursive pro-
cedural modeling program, we develop and prove the correctness
of a new SMC variant, Stochastically-Ordered Sequential Monte
Carlo (SOSMC). We implement SOSMC for general-purpose pro-
grams using a new programming primitive: the stochastic future.
Finally, we show that SOSMC reliably generates high-quality out-
puts for a variety of programs and control scoring functions. For
small computational budgets, SOSMC’s outputs often score nearly
twice as high as those of MCMC or normal SMC.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems;

Keywords: Procedural Modeling, Directable Randomness, Prob-
abilistic Programming, Sequential Monte Carlo

⇤e-mail: {dritchie, bmild, ngoodman, hanrahan}@stanford.edu

1 Introduction

Procedural modeling has long been used in computer graphics
to generate varied, detailed content with minimal human effort.
Procedural models for trees, buildings, cities, and decorative pat-
terns enrich the virtual worlds of movies and games [Měch and
Prusinkiewicz 1996; Müller et al. 2006; Wong et al. 1998]. Am-
bitious new projects aim to produce fully-procedural, galactic-
scale environments for players to explore [Procedural Reality 2014;
Hello Games 2014].

This expressive power comes at a cost: procedural models often
use complex, recursive control logic, resulting in emergent behav-
ior which is difficult to direct. As a result, technical artists often
must tweak parameters and massage initial conditions to achieve a
desired look. This time and effort may defeat the purpose of using
procedural modeling in the first place.

Fortunately, recent years have seen advances in the use of proba-
bilistic inference techniques to control procedural models [Talton
et al. 2011; Stava et al. 2014; Yeh et al. 2012]. Viewing a procedu-
ral model as sampling from a probability distribution allows for the
application of Bayesian inference techniques: the prior is the pro-
cedural model itself, and the likelihood is some high-level control
expessed as a scoring function.

This previous work relies on Markov Chain Monte Carlo (MCMC),
but other Bayesian posterior sampling algorithms are available: an-
other popular choice is Sequential Monte Carlo (SMC). SMC uses a
set of samples, or particles, to represent a distribution that changes
over time as new evidence is observed. As the distribution changes,
SMC shifts more particles (and thus more of its computational bud-
get) to higher-probability regions of the state space. For proba-
bilistic models that fit this pattern of ‘evidence arriving over time,’
such as modeling the location of a mobile robot, SMC is often the
method of choice: the incremental evidence it receives provides
feedback early and often, allowing it to converge quickly [Doucet
et al. 2001]. In contrast, MCMC receives feedback only after run-
ning through the entire model.

Ritchie, Mildenhall, Goodman, 
Hanrahan [SIGGRAPH’15]
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Hello Games 2014].

This expressive power comes at a cost: procedural models often
use complex, recursive control logic, resulting in emergent behav-
ior which is difficult to direct. As a result, technical artists often
must tweak parameters and massage initial conditions to achieve a
desired look. This time and effort may defeat the purpose of using
procedural modeling in the first place.

Fortunately, recent years have seen advances in the use of proba-
bilistic inference techniques to control procedural models [Talton
et al. 2011; Stava et al. 2014; Yeh et al. 2012]. Viewing a procedu-
ral model as sampling from a probability distribution allows for the
application of Bayesian inference techniques: the prior is the pro-
cedural model itself, and the likelihood is some high-level control
expessed as a scoring function.

This previous work relies on Markov Chain Monte Carlo (MCMC),
but other Bayesian posterior sampling algorithms are available: an-
other popular choice is Sequential Monte Carlo (SMC). SMC uses a
set of samples, or particles, to represent a distribution that changes
over time as new evidence is observed. As the distribution changes,
SMC shifts more particles (and thus more of its computational bud-
get) to higher-probability regions of the state space. For proba-
bilistic models that fit this pattern of ‘evidence arriving over time,’
such as modeling the location of a mobile robot, SMC is often the
method of choice: the incremental evidence it receives provides
feedback early and often, allowing it to converge quickly [Doucet
et al. 2001]. In contrast, MCMC receives feedback only after run-
ning through the entire model.
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An inference algo. for a prob. PL can be viewed 
as a non-standard approximate interpreter.
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popular algo. with many variants.
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Key question

How to reason about prob. programs under such 
concurrent non-standard approximate semantics?



Concrete question 1:       
Correctness

[Q] Are these algo. correct for prob. programs?

Usually proved for ℝn or simple cases. 

Challenge 1: Expressiveness of prob. PLs.

Challenge 2: Subtle notion of correctness.
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Concrete question 2:       
Refinement

Programs may be semantically equivalent but 
some are easy for these algo., and some hard.

[Q] Capture this difference by an algo.-specific 
refinement ⊑. Develop proof rules for ⊑.

(let [x (sample (normal 0 2)) 
      a (observe (normal x 1) 2.1) 
      y (sample (normal (* 0.9 x) 2)) 
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  [x y])
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Prog2 ⊑ Prog1 



Concrete question 3:       
Good sublanguages

[Q1] Find a sublanguage that drops the time 
complexity of an inference algorithm. 

[Q2] Find a sublanguage that allows a GPU-
based implementation of an inference algo.



Reason 2: 
Probabilistic PLs raise 
new semantic issues.
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Issue 1:
Higher-order functions

Measure theory provides a standard foundation 
of probability theory.

But it doesn’t support HO fns well.

ev : (ℝ→mℝ) x ℝ → ℝ,      ev(f,x) = f(x).

[Aumann 61] ev is not measurable no matter 
which σ-algebra is used for ℝ→mℝ.



1. Higher-order functions.
3. Observe and commutativity.
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Issue 2:
Conditioning and prog. eqs

• M should model prob. computations.

• M should validate equations from statistics.

• M should be commutative.

• Difficult to find such M due to conditioning.

nearly-finite measures
nonfinite measurese:real⟦ ⟧ ∈ M(ℝ)



Issue 3:
Meta-programming features 

My ML colleagues are very much interested in 
probabilistic models for programs.

They express such models using quote & eval.

[Q] How to interpret meta-programming 
features in Anglican/Church/Venture?



My research*: 
Address issues 1&2 with

Quasi-Borel spaces.

* based on Heunen et al.’s LICS’17 



Big picture 1:
Extend measure theory 
using category theory.
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1. Higher-order fns.
2. Conditioning, prog. eqs.



Big picture 2:
Random element first.
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Random element α in X

α : ℝ → X

• X - set of values.

• ℝ - set of random seeds.

• Random seed generator.

in quasi-Borel spaces

1. ℝ as random source
2. Borel subsets 𝕭⊆2ℝ

3. M ⊆ [ℝ→X]  

is a random variable 
if α∈M



• Measure theory:

• Measurable space (X, Θ⊆2Χ).

• Random element is an induced concept.

• QBS:

• Quasi-Borel space (X, M⊆[ℝ→X]).

• M is the set of random elements.



Quasi-Borel spaces

• New axiomatisation of probability theory.

• Enabled us to generalise classical results in 
probability theory such as de Finetti thm.



Try probabilistic PLs

Anglican:                                                   
http://www.robots.ox.ac.uk/~fwood/anglican/

WebPPL:                                                          
http://webppl.org/


