
Probabilistic Programming
Hongseok Yang

KAIST

Last part based on work with Chris Heunen, Ohad Kammar and Sam Staton

This Review … discusses some of the state-of-
the-art advances in the field, namely, probabilistic
programming, Bayesian optimization, data
compression and automatic model discovery.

Zoubin Gharahmani
2015 Nature Review

What is probabilistic
programming?

(Bayesian) probabilistic
modelling of data

1. Develop a new probabilistic (generative) model.

2. Design an inference algorithm for the model.

3. Using the algo., fit the model to the data.

(Bayesian) probabilistic
modelling of data

1. Develop a new probabilistic (generative) model.

2. Design an inference algorithm for the model.

3. Using the algo., fit the model to the data.

in a prob. prog. language

(Bayesian) probabilistic
modelling of data

1. Develop a new probabilistic (generative) model.

2. Design an inference algorithm for the model.

3. Using the algo., fit the model to the data.

as a program

in a prob. prog. language

(Bayesian) probabilistic
modelling of data

1. Develop a new probabilistic (generative) model.

2. Design an inference algorithm for the model.

3. Using the algo., fit the model to the data.

a generic inference algo.
of the language

as a program

in a prob. prog. language

Line fitting

Line fitting

f(x) = s*x + b

Bayesian generative model
s

b
yi

i=0..6

Bayesian generative model
s

b
yi

i=0..6

s ~ normal(0, 2)
b ~ normal(0, 6)
f(x) = s*x + b
yi ~ normal(f(i), 1)
 where i = 1 .. 5

Q: posterior of (s,b) gi
ven y1 .. y5?

Bayesian generative model

s ~ normal(0, 2)
b ~ normal(0, 6)
f(x) = s*x + b
yi ~ normal(f(i), 0.5)
 where i = 0 .. 6

Q: posterior of (s,b)
given y1 .. y5?

s

b
yi

i=0..6

Bayesian generative model
s

b
yi

i=0..6

s ~ normal(0, 2)
b ~ normal(0, 6)
f(x) = s*x + b
yi ~ normal(f(i), 0.5)
 where i = 0 .. 6

Q: posterior of (s,b) given y0=0.6,
…, y6=8.4?

Posterior of s and b given yi's

p(y0, .., y6 | s,b) × p(s,b)

 p(y0, .., y6)
p(s, b | y0, .., y6) =

Posterior of s and b given yi's

p(y0, .., y6 | s,b) × p(s,b)

 p(y0, .., y6)
p(s, b | y0, .., y6) =

Posterior of s and b given yi's

p(y0, .., y6 | s,b) × p(s,b)

 p(y0, .., y6)
p(s, b | y0, .., y6) =

Posterior of s and b given yi's

p(y0, .., y6 | s,b) × p(s,b)

 p(y0, .., y6)
p(s, b | y0, .., y6) =

Anglican program
(let [s (sample (normal 0 2))
 b (sample (normal 0 6))
 f (fn [x] (+ (* s x) b))]

 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 (predict :sb [s b]))

Anglican program
(let [s (sample (normal 0 2))
 b (sample (normal 0 6))
 f (fn [x] (+ (* s x) b))]

 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 (predict :sb [s b]))

Anglican program
(let [s (sample (normal 0 2))
 b (sample (normal 0 6))
 f (fn [x] (+ (* s x) b))]

 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])

Samples from prior

Samples from posterior

Underfit?

Underfit?

Underfit?

Expressive prob. PLs
enable one to explore
advanced models easily.

(let [s (sample (normal 0 2))
 b (sample (normal 0 6))
 f (fn [x] (+ (* s x) b))]

 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

(let [s (sample (normal 0 2))
 b (sample (normal 0 6))
 f (fn [x] (+ (* s x) b))]

 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

Anglican fully supports
higher-order functions

(let [s (sample (normal 0 2))
 b (sample (normal 0 6))
 f (fn [x] (+ (* s x) b))]

 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

Can use higher-order functions.
Anglican fully supports
higher-order functions

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (F)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

Anglican fully supports
higher-order functions

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (add-change-points F 0 6)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

Anglican fully supports
higher-order functions

Samples from posterior

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (add-change-points F 0 6)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

Anglican fully supports
higher-order functions

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (add-change-points F 0 6)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

Anglican fully supports
higher-order functions

Samples from posterior

Captcha breaking

Le, Baydin, Wood [2016]

SMKBDF

Captcha breaking

Le, Baydin, Wood [2016]

SMKBDF

1. Sample a string.
2. Generate an image using

complex Java code.

Captcha breaking

Le, Baydin, Wood [2016]

SMKBDF

1. Sample a string.
2. Generate an image using

complex JVM code.

Captcha breaking

Le, Baydin, Wood [2016]

SMKBDF

Anglican’s inference engine
based on neural nets

1. Sample a string.
2. Generate an image using

complex JVM code.

Captcha breaking

Le, Baydin, Wood [2016]

LSTM . . .

xt!1

at

it

type*at)

one-hot

one-hot

one-hot

fobs

f smp
a!!!#i!!!

fprop
a!#i!

%t %t(1 %t(2

ht ht(1 ht(2

�t �t(1 �t(2

observe

s'mple

Captcha breaking

Le, Baydin, Wood [2016]

LSTM . . .

xt!1

at

it

type*at)

one-hot

one-hot

one-hot

fobs

f smp
a!!!#i!!!

fprop
a!#i!

%t %t(1 %t(2

ht ht(1 ht(2

�t �t(1 �t(2

observe

s'mple

Neural net as a part
of inference engine.

Approximates the
inverse of the

Captchar program.

Captcha breaking

Le, Baydin, Wood [2016]

LSTM . . .

xt!1

at

it

type*at)

one-hot

one-hot

one-hot

fobs

f smp
a!!!#i!!!

fprop
a!#i!

%t %t(1 %t(2

ht ht(1 ht(2

�t �t(1 �t(2

observe

s'mple

Neural net as a part
of inference engine.

Approximates the
inverse of the

Captcha program.

Procedural modelling

Controlling Procedural Modeling Programs with
Stochastically-Ordered Sequential Monte Carlo

Daniel Ritchie⇤
Stanford University

Ben Mildenhall⇤
Stanford University

Noah D. Goodman⇤
Stanford University

Pat Hanrahan⇤
Stanford University

Forward Sampling SOSMC-Controlled Sampling Forward Sampling SOSMC-Controlled Sampling

Figure 1: Controlling the output of highly-variable procedural modeling programs using our Stochastically-Ordered Sequential Monte Carlo
algorithm. Here, the controls encourage volumetric similarity to a target shape (shown in black).

Abstract

We present a method for controlling the output of procedural
modeling programs using Sequential Monte Carlo (SMC). Previ-
ous probabilistic methods for controlling procedural models use
Markov Chain Monte Carlo (MCMC), which receives control feed-
back only for completely-generated models. In contrast, SMC re-
ceives feedback incrementally on incomplete models, allowing it to
reallocate computational resources and converge quickly. To handle
the many possible sequentializations of a structured, recursive pro-
cedural modeling program, we develop and prove the correctness
of a new SMC variant, Stochastically-Ordered Sequential Monte
Carlo (SOSMC). We implement SOSMC for general-purpose pro-
grams using a new programming primitive: the stochastic future.
Finally, we show that SOSMC reliably generates high-quality out-
puts for a variety of programs and control scoring functions. For
small computational budgets, SOSMC’s outputs often score nearly
twice as high as those of MCMC or normal SMC.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems;

Keywords: Procedural Modeling, Directable Randomness, Prob-
abilistic Programming, Sequential Monte Carlo

⇤e-mail: {dritchie, bmild, ngoodman, hanrahan}@stanford.edu

1 Introduction

Procedural modeling has long been used in computer graphics
to generate varied, detailed content with minimal human effort.
Procedural models for trees, buildings, cities, and decorative pat-
terns enrich the virtual worlds of movies and games [Měch and
Prusinkiewicz 1996; Müller et al. 2006; Wong et al. 1998]. Am-
bitious new projects aim to produce fully-procedural, galactic-
scale environments for players to explore [Procedural Reality 2014;
Hello Games 2014].

This expressive power comes at a cost: procedural models often
use complex, recursive control logic, resulting in emergent behav-
ior which is difficult to direct. As a result, technical artists often
must tweak parameters and massage initial conditions to achieve a
desired look. This time and effort may defeat the purpose of using
procedural modeling in the first place.

Fortunately, recent years have seen advances in the use of proba-
bilistic inference techniques to control procedural models [Talton
et al. 2011; Stava et al. 2014; Yeh et al. 2012]. Viewing a procedu-
ral model as sampling from a probability distribution allows for the
application of Bayesian inference techniques: the prior is the pro-
cedural model itself, and the likelihood is some high-level control
expessed as a scoring function.

This previous work relies on Markov Chain Monte Carlo (MCMC),
but other Bayesian posterior sampling algorithms are available: an-
other popular choice is Sequential Monte Carlo (SMC). SMC uses a
set of samples, or particles, to represent a distribution that changes
over time as new evidence is observed. As the distribution changes,
SMC shifts more particles (and thus more of its computational bud-
get) to higher-probability regions of the state space. For proba-
bilistic models that fit this pattern of ‘evidence arriving over time,’
such as modeling the location of a mobile robot, SMC is often the
method of choice: the incremental evidence it receives provides
feedback early and often, allowing it to converge quickly [Doucet
et al. 2001]. In contrast, MCMC receives feedback only after run-
ning through the entire model.

Ritchie, Mildenhall, Goodman,
Hanrahan [SIGGRAPH’15]

Procedural modelling

Controlling Procedural Modeling Programs with
Stochastically-Ordered Sequential Monte Carlo

Daniel Ritchie⇤
Stanford University

Ben Mildenhall⇤
Stanford University

Noah D. Goodman⇤
Stanford University

Pat Hanrahan⇤
Stanford University

Forward Sampling SOSMC-Controlled Sampling Forward Sampling SOSMC-Controlled Sampling

Figure 1: Controlling the output of highly-variable procedural modeling programs using our Stochastically-Ordered Sequential Monte Carlo
algorithm. Here, the controls encourage volumetric similarity to a target shape (shown in black).

Abstract

We present a method for controlling the output of procedural
modeling programs using Sequential Monte Carlo (SMC). Previ-
ous probabilistic methods for controlling procedural models use
Markov Chain Monte Carlo (MCMC), which receives control feed-
back only for completely-generated models. In contrast, SMC re-
ceives feedback incrementally on incomplete models, allowing it to
reallocate computational resources and converge quickly. To handle
the many possible sequentializations of a structured, recursive pro-
cedural modeling program, we develop and prove the correctness
of a new SMC variant, Stochastically-Ordered Sequential Monte
Carlo (SOSMC). We implement SOSMC for general-purpose pro-
grams using a new programming primitive: the stochastic future.
Finally, we show that SOSMC reliably generates high-quality out-
puts for a variety of programs and control scoring functions. For
small computational budgets, SOSMC’s outputs often score nearly
twice as high as those of MCMC or normal SMC.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems;

Keywords: Procedural Modeling, Directable Randomness, Prob-
abilistic Programming, Sequential Monte Carlo

⇤e-mail: {dritchie, bmild, ngoodman, hanrahan}@stanford.edu

1 Introduction

Procedural modeling has long been used in computer graphics
to generate varied, detailed content with minimal human effort.
Procedural models for trees, buildings, cities, and decorative pat-
terns enrich the virtual worlds of movies and games [Měch and
Prusinkiewicz 1996; Müller et al. 2006; Wong et al. 1998]. Am-
bitious new projects aim to produce fully-procedural, galactic-
scale environments for players to explore [Procedural Reality 2014;
Hello Games 2014].

This expressive power comes at a cost: procedural models often
use complex, recursive control logic, resulting in emergent behav-
ior which is difficult to direct. As a result, technical artists often
must tweak parameters and massage initial conditions to achieve a
desired look. This time and effort may defeat the purpose of using
procedural modeling in the first place.

Fortunately, recent years have seen advances in the use of proba-
bilistic inference techniques to control procedural models [Talton
et al. 2011; Stava et al. 2014; Yeh et al. 2012]. Viewing a procedu-
ral model as sampling from a probability distribution allows for the
application of Bayesian inference techniques: the prior is the pro-
cedural model itself, and the likelihood is some high-level control
expessed as a scoring function.

This previous work relies on Markov Chain Monte Carlo (MCMC),
but other Bayesian posterior sampling algorithms are available: an-
other popular choice is Sequential Monte Carlo (SMC). SMC uses a
set of samples, or particles, to represent a distribution that changes
over time as new evidence is observed. As the distribution changes,
SMC shifts more particles (and thus more of its computational bud-
get) to higher-probability regions of the state space. For proba-
bilistic models that fit this pattern of ‘evidence arriving over time,’
such as modeling the location of a mobile robot, SMC is often the
method of choice: the incremental evidence it receives provides
feedback early and often, allowing it to converge quickly [Doucet
et al. 2001]. In contrast, MCMC receives feedback only after run-
ning through the entire model.

Ritchie, Mildenhall, Goodman,
Hanrahan [SIGGRAPH’15]

1. Sample a 3D object.
2. Score the object.
Used stochastic future.

Procedural modelling

Controlling Procedural Modeling Programs with
Stochastically-Ordered Sequential Monte Carlo

Daniel Ritchie⇤
Stanford University

Ben Mildenhall⇤
Stanford University

Noah D. Goodman⇤
Stanford University

Pat Hanrahan⇤
Stanford University

Forward Sampling SOSMC-Controlled Sampling Forward Sampling SOSMC-Controlled Sampling

Figure 1: Controlling the output of highly-variable procedural modeling programs using our Stochastically-Ordered Sequential Monte Carlo
algorithm. Here, the controls encourage volumetric similarity to a target shape (shown in black).

Abstract

We present a method for controlling the output of procedural
modeling programs using Sequential Monte Carlo (SMC). Previ-
ous probabilistic methods for controlling procedural models use
Markov Chain Monte Carlo (MCMC), which receives control feed-
back only for completely-generated models. In contrast, SMC re-
ceives feedback incrementally on incomplete models, allowing it to
reallocate computational resources and converge quickly. To handle
the many possible sequentializations of a structured, recursive pro-
cedural modeling program, we develop and prove the correctness
of a new SMC variant, Stochastically-Ordered Sequential Monte
Carlo (SOSMC). We implement SOSMC for general-purpose pro-
grams using a new programming primitive: the stochastic future.
Finally, we show that SOSMC reliably generates high-quality out-
puts for a variety of programs and control scoring functions. For
small computational budgets, SOSMC’s outputs often score nearly
twice as high as those of MCMC or normal SMC.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems;

Keywords: Procedural Modeling, Directable Randomness, Prob-
abilistic Programming, Sequential Monte Carlo

⇤e-mail: {dritchie, bmild, ngoodman, hanrahan}@stanford.edu

1 Introduction

Procedural modeling has long been used in computer graphics
to generate varied, detailed content with minimal human effort.
Procedural models for trees, buildings, cities, and decorative pat-
terns enrich the virtual worlds of movies and games [Měch and
Prusinkiewicz 1996; Müller et al. 2006; Wong et al. 1998]. Am-
bitious new projects aim to produce fully-procedural, galactic-
scale environments for players to explore [Procedural Reality 2014;
Hello Games 2014].

This expressive power comes at a cost: procedural models often
use complex, recursive control logic, resulting in emergent behav-
ior which is difficult to direct. As a result, technical artists often
must tweak parameters and massage initial conditions to achieve a
desired look. This time and effort may defeat the purpose of using
procedural modeling in the first place.

Fortunately, recent years have seen advances in the use of proba-
bilistic inference techniques to control procedural models [Talton
et al. 2011; Stava et al. 2014; Yeh et al. 2012]. Viewing a procedu-
ral model as sampling from a probability distribution allows for the
application of Bayesian inference techniques: the prior is the pro-
cedural model itself, and the likelihood is some high-level control
expessed as a scoring function.

This previous work relies on Markov Chain Monte Carlo (MCMC),
but other Bayesian posterior sampling algorithms are available: an-
other popular choice is Sequential Monte Carlo (SMC). SMC uses a
set of samples, or particles, to represent a distribution that changes
over time as new evidence is observed. As the distribution changes,
SMC shifts more particles (and thus more of its computational bud-
get) to higher-probability regions of the state space. For proba-
bilistic models that fit this pattern of ‘evidence arriving over time,’
such as modeling the location of a mobile robot, SMC is often the
method of choice: the incremental evidence it receives provides
feedback early and often, allowing it to converge quickly [Doucet
et al. 2001]. In contrast, MCMC receives feedback only after run-
ning through the entire model.

Ritchie, Mildenhall, Goodman,
Hanrahan [SIGGRAPH’15]

1. Sample a 3D object.
2. Score the object.
Used stochastic future.

Procedural modelling

Controlling Procedural Modeling Programs with
Stochastically-Ordered Sequential Monte Carlo

Daniel Ritchie⇤
Stanford University

Ben Mildenhall⇤
Stanford University

Noah D. Goodman⇤
Stanford University

Pat Hanrahan⇤
Stanford University

Forward Sampling SOSMC-Controlled Sampling Forward Sampling SOSMC-Controlled Sampling

Figure 1: Controlling the output of highly-variable procedural modeling programs using our Stochastically-Ordered Sequential Monte Carlo
algorithm. Here, the controls encourage volumetric similarity to a target shape (shown in black).

Abstract

We present a method for controlling the output of procedural
modeling programs using Sequential Monte Carlo (SMC). Previ-
ous probabilistic methods for controlling procedural models use
Markov Chain Monte Carlo (MCMC), which receives control feed-
back only for completely-generated models. In contrast, SMC re-
ceives feedback incrementally on incomplete models, allowing it to
reallocate computational resources and converge quickly. To handle
the many possible sequentializations of a structured, recursive pro-
cedural modeling program, we develop and prove the correctness
of a new SMC variant, Stochastically-Ordered Sequential Monte
Carlo (SOSMC). We implement SOSMC for general-purpose pro-
grams using a new programming primitive: the stochastic future.
Finally, we show that SOSMC reliably generates high-quality out-
puts for a variety of programs and control scoring functions. For
small computational budgets, SOSMC’s outputs often score nearly
twice as high as those of MCMC or normal SMC.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems;

Keywords: Procedural Modeling, Directable Randomness, Prob-
abilistic Programming, Sequential Monte Carlo

⇤e-mail: {dritchie, bmild, ngoodman, hanrahan}@stanford.edu

1 Introduction

Procedural modeling has long been used in computer graphics
to generate varied, detailed content with minimal human effort.
Procedural models for trees, buildings, cities, and decorative pat-
terns enrich the virtual worlds of movies and games [Měch and
Prusinkiewicz 1996; Müller et al. 2006; Wong et al. 1998]. Am-
bitious new projects aim to produce fully-procedural, galactic-
scale environments for players to explore [Procedural Reality 2014;
Hello Games 2014].

This expressive power comes at a cost: procedural models often
use complex, recursive control logic, resulting in emergent behav-
ior which is difficult to direct. As a result, technical artists often
must tweak parameters and massage initial conditions to achieve a
desired look. This time and effort may defeat the purpose of using
procedural modeling in the first place.

Fortunately, recent years have seen advances in the use of proba-
bilistic inference techniques to control procedural models [Talton
et al. 2011; Stava et al. 2014; Yeh et al. 2012]. Viewing a procedu-
ral model as sampling from a probability distribution allows for the
application of Bayesian inference techniques: the prior is the pro-
cedural model itself, and the likelihood is some high-level control
expessed as a scoring function.

This previous work relies on Markov Chain Monte Carlo (MCMC),
but other Bayesian posterior sampling algorithms are available: an-
other popular choice is Sequential Monte Carlo (SMC). SMC uses a
set of samples, or particles, to represent a distribution that changes
over time as new evidence is observed. As the distribution changes,
SMC shifts more particles (and thus more of its computational bud-
get) to higher-probability regions of the state space. For proba-
bilistic models that fit this pattern of ‘evidence arriving over time,’
such as modeling the location of a mobile robot, SMC is often the
method of choice: the incremental evidence it receives provides
feedback early and often, allowing it to converge quickly [Doucet
et al. 2001]. In contrast, MCMC receives feedback only after run-
ning through the entire model.

Ritchie, Mildenhall, Goodman,
Hanrahan [SIGGRAPH’15]

1. Sample a 3D object.
2. Score the object.
Used stochastic future.

Procedural modelling

Controlling Procedural Modeling Programs with
Stochastically-Ordered Sequential Monte Carlo

Daniel Ritchie⇤
Stanford University

Ben Mildenhall⇤
Stanford University

Noah D. Goodman⇤
Stanford University

Pat Hanrahan⇤
Stanford University

Forward Sampling SOSMC-Controlled Sampling Forward Sampling SOSMC-Controlled Sampling

Figure 1: Controlling the output of highly-variable procedural modeling programs using our Stochastically-Ordered Sequential Monte Carlo
algorithm. Here, the controls encourage volumetric similarity to a target shape (shown in black).

Abstract

We present a method for controlling the output of procedural
modeling programs using Sequential Monte Carlo (SMC). Previ-
ous probabilistic methods for controlling procedural models use
Markov Chain Monte Carlo (MCMC), which receives control feed-
back only for completely-generated models. In contrast, SMC re-
ceives feedback incrementally on incomplete models, allowing it to
reallocate computational resources and converge quickly. To handle
the many possible sequentializations of a structured, recursive pro-
cedural modeling program, we develop and prove the correctness
of a new SMC variant, Stochastically-Ordered Sequential Monte
Carlo (SOSMC). We implement SOSMC for general-purpose pro-
grams using a new programming primitive: the stochastic future.
Finally, we show that SOSMC reliably generates high-quality out-
puts for a variety of programs and control scoring functions. For
small computational budgets, SOSMC’s outputs often score nearly
twice as high as those of MCMC or normal SMC.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems;

Keywords: Procedural Modeling, Directable Randomness, Prob-
abilistic Programming, Sequential Monte Carlo

⇤e-mail: {dritchie, bmild, ngoodman, hanrahan}@stanford.edu

1 Introduction

Procedural modeling has long been used in computer graphics
to generate varied, detailed content with minimal human effort.
Procedural models for trees, buildings, cities, and decorative pat-
terns enrich the virtual worlds of movies and games [Měch and
Prusinkiewicz 1996; Müller et al. 2006; Wong et al. 1998]. Am-
bitious new projects aim to produce fully-procedural, galactic-
scale environments for players to explore [Procedural Reality 2014;
Hello Games 2014].

This expressive power comes at a cost: procedural models often
use complex, recursive control logic, resulting in emergent behav-
ior which is difficult to direct. As a result, technical artists often
must tweak parameters and massage initial conditions to achieve a
desired look. This time and effort may defeat the purpose of using
procedural modeling in the first place.

Fortunately, recent years have seen advances in the use of proba-
bilistic inference techniques to control procedural models [Talton
et al. 2011; Stava et al. 2014; Yeh et al. 2012]. Viewing a procedu-
ral model as sampling from a probability distribution allows for the
application of Bayesian inference techniques: the prior is the pro-
cedural model itself, and the likelihood is some high-level control
expessed as a scoring function.

This previous work relies on Markov Chain Monte Carlo (MCMC),
but other Bayesian posterior sampling algorithms are available: an-
other popular choice is Sequential Monte Carlo (SMC). SMC uses a
set of samples, or particles, to represent a distribution that changes
over time as new evidence is observed. As the distribution changes,
SMC shifts more particles (and thus more of its computational bud-
get) to higher-probability regions of the state space. For proba-
bilistic models that fit this pattern of ‘evidence arriving over time,’
such as modeling the location of a mobile robot, SMC is often the
method of choice: the incremental evidence it receives provides
feedback early and often, allowing it to converge quickly [Doucet
et al. 2001]. In contrast, MCMC receives feedback only after run-
ning through the entire model.

Ritchie, Mildenhall, Goodman,
Hanrahan [SIGGRAPH’15]

1. Sample a 3D object.
2. Score the object.
Used stochastic future.

WebPPL’s inference
engine that exploits

stochastic future

Why might QONFEST
audience be interested?

Reason 1:
Unusual use of
concurrency.

An inference algo. for a prob. PL can be viewed
as a non-standard approximate interpreter.

Sequential Monte Carlo (in short SMC) is a
popular algo. with many variants.

SMC runs sequential probabilistic programs
concurrently with added synchronisation.

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

x y

a b

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

x y

a b

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

x y

a b

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

x y

a b

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

x y

a b

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

x y

a b

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

x y

a b

Goal: Generate samples from
posterior p(x,y | a=2.1,b=1.8).

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

Sequential
Monte-Carlo

algorithm

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

Sequential
Monte-Carlo

algorithm

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

Sequential
Monte-Carlo

algorithm

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

Sequential
Monte-Carlo

algorithm

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

Sequential
Monte-Carlo

algorithm

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

Sequential
Monte-Carlo

algorithm

1. Update weights.
w ⟵ pnormal(2.1;x,1)

2. Resample and
reset weights.

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

Sequential
Monte-Carlo

algorithm

1. Update weights.
w ⟵ pnormal(2.1;x,1)

2. Resample and
reset weights.

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

Sequential
Monte-Carlo

algorithm

1. Update weights.
w ⟵ pnormal(2.1;x,1)

2. Resample and
reset weights.

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

Sequential
Monte-Carlo

algorithm

1. Update weights.
w ⟵ pnormal(2.1;x,1)

2. Resample and
reset weights.

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

w:1
x:2.3
y:2.2

Sequential
Monte-Carlo

algorithm

1. Update weights.
w ⟵ pnormal(2.1;x,1)

2. Resample and
reset weights.

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

w:1
x:2.3
y:2.2

w:1
x:1.1
y:0.8

Sequential
Monte-Carlo

algorithm

1. Update weights.
w ⟵ pnormal(2.1;x,1)

2. Resample and
reset weights.

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

w:1
x:2.3
y:2.2

w:1
x:2.3
y:1.8

w:1
x:2.3
y:2.1

w:1
x:1.1
y:0.8

Sequential
Monte-Carlo

algorithm

1. Update weights.
w ⟵ pnormal(2.1;x,1)

2. Resample and
reset weights.

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

w:1
x:2.3
y:2.2

w:1
x:2.3
y:1.8

w:1
x:2.3
y:2.1

w:1
x:1.1
y:0.8

Sequential
Monte-Carlo

algorithm

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

w:1
x:2.3
y:2.2

w:1
x:2.3
y:1.8

w:1
x:2.3
y:2.1

w:1
x:1.1
y:0.8

Sequential
Monte-Carlo

algorithm

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

w:1
x:2.3
y:2.2

w:1
x:2.3
y:1.8

w:1
x:2.3
y:2.1

w:1
x:1.1
y:0.8

Sequential
Monte-Carlo

algorithm

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

w:1
x:2.3
y:2.2

w:1
x:2.3
y:1.8

w:1
x:2.3
y:2.1

w:1
x:1.1
y:0.8

Sequential
Monte-Carlo

algorithm

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

w:1
x:2.3
y:2.2

w:1
x:2.3
y:1.8

w:1
x:2.3
y:2.1

w:1
x:1.1
y:0.8

w:0.31
x:2.3
y:2.5

w:0.40
x:2.3
y:1.8

w:0.40
x:2.3
y:1.9

w:0.24
x:1.1
y:0.8

Sequential
Monte-Carlo

algorithm

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

w:1
x:2.3
y:2.2

w:1
x:2.3
y:1.8

w:1
x:2.3
y:2.1

w:1
x:1.1
y:0.8

w:0.31
x:2.3
y:2.5

w:0.40
x:2.3
y:1.8

w:0.40
x:2.3
y:1.9

w:0.24
x:1.1
y:0.8

Sequential
Monte-Carlo

algorithm

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

w:1
x:2.3
y:2.2

w:1
x:2.3
y:1.8

w:1
x:2.3
y:2.1

w:1
x:1.1
y:0.8

w:0.31
x:2.3
y:2.5

w:0.40
x:2.3
y:1.8

w:0.40
x:2.3
y:1.9

w:0.24
x:1.1
y:0.8

Sequential
Monte-Carlo

algorithm

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

w:1
x:2.3
y:2.2

w:1
x:2.3
y:1.8

w:1
x:2.3
y:2.1

w:1
x:1.1
y:0.8

w:0.31
x:2.3
y:2.5

w:0.40
x:2.3
y:1.8

w:0.40
x:2.3
y:1.9

w:0.24
x:1.1
y:0.8

Sequential
Monte-Carlo

algorithm

4 samples

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

w:1
x:2.3
y:2.2

w:1
x:2.3
y:1.8

w:1
x:2.3
y:2.1

w:1
x:1.1
y:0.8

w:0.31
x:2.3
y:2.5

w:0.40
x:2.3
y:1.8

w:0.40
x:2.3
y:1.9

w:0.24
x:1.1
y:0.8

Sequential
Monte-Carlo

algorithm

4 samples

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

Particle
Gibbs

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.39
x:2.3

w:0.06
x:0.2

w:1
x:2.3
y:2.2

w:1
x:2.3
y:1.8

w:1
x:2.3
y:2.1

w:1
x:1.1
y:0.8

w:0.31
x:2.3
y:2.5

w:0.40
x:2.3
y:1.8

w:0.40
x:2.3
y:1.9

w:0.24
x:1.1
y:0.8

Particle
Gibbs

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:1.1

w:1
x:-0.3

w:1
x:2.3

w:1
x:0.2

w:0.24
x:1.1

w:0.02
x:-0.3

w:0.06
x:0.2

w:1
x:2.3
y:2.2

w:1
x:2.3
y:1.8

w:1
x:1.1
y:0.8

w:0.31
x:2.3
y:2.5

w:0.40
x:2.3
y:1.8

w:0.24
x:1.1
y:0.8

Particle
Gibbs

w:0.39
x:2.3

w:1
x:2.3
y:2.1

w:0.40
x:2.3
y:1.9 1 sample

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:2.3

w:0.39
x:2.3

w:1
x:2.3
y:2.1

w:0.40
x:2.3
y:1.9 1 sample

Particle
Gibbs

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:2.3

w:0.39
x:2.3

w:1
x:2.3
y:2.1

w:0.40
x:2.3
y:1.9

w:1
x:…

w:1
x:…

w:1
x:…

Particle
Gibbs

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:2.3

w:0.39
x:2.3

w:1
x:2.3
y:2.1

w:0.40
x:2.3
y:1.9

w:1
x:…

w:1
x:…

w:1
x:…

w:…
x:…

w:…
x:…

w:…
x:…

Particle
Gibbs

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:2.3

w:0.39
x:2.3

w:1
x:2.3
y:2.1

w:0.40
x:2.3
y:1.9

w:1
x:…

w:1
x:…

w:1
x:…

w:…
x:…

w:…
x:…

w:…
x:…

w:1
x:2.3
y:2.2

w:1
x:…
y:1.8

w:1
x:…
y:0.8

Particle
Gibbs

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:2.3

w:0.39
x:2.3

w:1
x:2.3
y:2.1

w:0.40
x:2.3
y:1.9

w:1
x:…

w:1
x:…

w:1
x:…

w:…
x:…

w:…
x:…

w:…
x:…

w:1
x:2.3
y:2.2

w:1
x:…
y:1.8

w:1
x:…
y:0.8

Particle
Gibbs

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:2.3

w:0.39
x:2.3

w:1
x:2.3
y:2.1

w:0.40
x:2.3
y:1.9

w:1
x:…

w:1
x:…

w:1
x:…

w:…
x:…

w:…
x:…

w:…
x:…

w:1
x:2.3
y:…

w:1
x:…
y:…

w:1
x:…
y:…

Particle
Gibbs

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:2.3

w:0.39
x:2.3

w:1
x:2.3
y:2.1

w:0.40
x:2.3
y:1.9

w:1
x:…

w:1
x:…

w:1
x:…

w:…
x:…

w:…
x:…

w:…
x:…

w:1
x:2.3
y:…

w:1
x:…
y:…

w:1
x:…
y:…

Particle
Gibbs

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:2.3

w:0.39
x:2.3

w:1
x:2.3
y:2.1

w:0.40
x:2.3
y:1.9

w:1
x:…

w:1
x:…

w:1
x:…

w:…
x:…

w:…
x:…

w:…
x:…

w:1
x:2.3
y:…

w:1
x:…
y:…

w:1
x:…
y:…

w:…
x:2.3
y:…

w:…
x:…
y:…

w:…
x:…
y:…

Particle
Gibbs

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:2.3

w:0.39
x:2.3

w:1
x:2.3
y:2.1

w:0.40
x:2.3
y:1.9

w:1
x:…

w:1
x:…

w:1
x:…

w:…
x:…

w:…
x:…

w:…
x:…

w:1
x:2.3
y:…

w:1
x:…
y:…

w:1
x:…
y:…

w:…
x:2.3
y:…

w:…
x:…
y:…

w:…
x:…
y:…

Particle
Gibbs

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:2.3

w:0.39
x:2.3

w:1
x:2.3
y:2.1

w:0.40
x:2.3
y:1.9

w:1
x:…

w:1
x:…

w:1
x:…

w:…
x:…

w:…
x:…

w:…
x:…

w:1
x:2.3
y:…

w:1
x:…
y:…

w:1
x:…
y:…

w:…
x:2.3
y:…

w:…
x:…
y:…

w:…
x:…
y:…

Particle
Gibbs

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

w:1
x:…

w:…
x:…

w:1
x:…
y:…

w:…
x:…
y:…

Particle
Gibbs

Inference algorithms for Anglican

Inference algorithms for Anglican

 6 variants of SMC

Key question

How to reason about prob. programs under such
concurrent non-standard approximate semantics?

Concrete question 1:
Correctness

[Q] Are these algo. correct for prob. programs?

Usually proved for ℝn or simple cases.

Challenge 1: Expressiveness of prob. PLs.

Challenge 2: Subtle notion of correctness.

Concrete question 1:
Correctness

[Q] Are these algo. correct for prob. programs?

Usually proved for ℝn or simple cases.

Challenge 1: Expressiveness of prob. PLs.

Challenge 2: Subtle notion of correctness.

Seq. Monte Carlo gives a right answer (weak
convergence) as the # of threads goes to ∞.

Concrete question 2:
Refinement

Programs may be semantically equivalent but
some are easy for these algo., and some hard.

[Q] Capture this difference by an algo.-specific
refinement ⊑. Develop proof rules for ⊑.

Concrete question 2:
Refinement

Programs may be semantically equivalent but
some are easy for these algo., and some hard.

[Q] Capture this difference by an algo.-specific
refinement ⊑. Develop proof rules for ⊑.

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

Prog1

Concrete question 2:
Refinement

Programs may be semantically equivalent but
some are easy for these algo., and some hard.

[Q] Capture this difference by an algo.-specific
refinement ⊑. Develop proof rules for ⊑.

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

Prog1 Prog2

Concrete question 2:
Refinement

Programs may be semantically equivalent but
some are easy for these algo., and some hard.

[Q] Capture this difference by an algo.-specific
refinement ⊑. Develop proof rules for ⊑.

(let [x (sample (normal 0 2))
 a (observe (normal x 1) 2.1)
 y (sample (normal (* 0.9 x) 2))
 b (observe (normal y 1) 1.8)]
 [x y])

Prog1 Prog2

Prog2 ⊑ Prog1

Concrete question 3:
Good sublanguages

[Q1] Find a sublanguage that drops the time
complexity of an inference algorithm.

[Q2] Find a sublanguage that allows a GPU-
based implementation of an inference algo.

Reason 2:
Probabilistic PLs raise
new semantic issues.

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (add-change-points F 0 6)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 f)

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (add-change-points F 0 6)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 f) 1. Higher-order functions.
3. Conditioning and prog. eqs.

Issue 1:
Higher-order functions

Measure theory provides a standard foundation
of probability theory.

But it doesn’t support HO fns well.

ev : (ℝ→mℝ) x ℝ → ℝ, ev(f,x) = f(x).

[Aumann 61] ev is not measurable no matter
which σ-algebra is used for ℝ→mℝ.

1. Higher-order functions.
3. Observe and commutativity.

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (add-change-points F 0 6)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 f)

1. Higher-order functions.
2. Conditioning and prog. eqs.

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (add-change-points F 0 6)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 f)

Issue 2:
Conditioning and prog. eqs

• M should model prob. computations.

• M should validate equations from statistics.

• M should be commutative.

• Difficult to find such M due to conditioning.

e:real⟦ ⟧ ∈ M(ℝ)

Issue 2:
Conditioning and prog. eqs

• M should model prob. computations.

• M should validate equations from statistics.

• M should be commutative.

• Difficult to find such M due to conditioning.

only certain measures
nonfinite measurese:real⟦ ⟧ ∈ M(ℝ)

Issue 2:
Conditioning and prog. eqs

• M should model prob. computations.

• M should validate equations from statistics.

• M should be commutative.

• Difficult to find such M due to conditioning.

nearly-finite measures
nonfinite measurese:real⟦ ⟧ ∈ M(ℝ)

Issue 3:
Meta-programming features

My ML colleagues are very much interested in
probabilistic models for programs.

They express such models using quote & eval.

[Q] How to interpret meta-programming
features in Anglican/Church/Venture?

My research*:
Address issues 1&2 with

Quasi-Borel spaces.

* based on Heunen et al.’s LICS’17

Big picture 1:
Extend measure theory
using category theory.

1. Higher-order fns.
2. Conditioning, prog. eqs.

MeasB

1. Higher-order fns.
2. Conditioning, prog. eqs.

MeasB

[MeasBop, Set]∏

Yoneda
embedding

1. Higher-order fns.
2. Conditioning, prog. eqs.

MeasB

[MeasBop, Set]∏

Yoneda
embedding

1. Higher-order fns.
2. Conditioning, prog. eqs.

Preserves nearly
all the structures

MeasB

[MeasBop, Set]∏

Yoneda
embedding

Enough structure
for function types

1. Higher-order fns.
2. Conditioning, prog. eqs.

MeasB

[MeasBop, Set]∏

Yoneda
embedding

1. Higher-order fns.
2. Conditioning, prog. eqs.

MeasB

[MeasBop, Set]∏

Yoneda
embedding

QBS

Full subcat. of
separated functors

1. Higher-order fns.
2. Conditioning, prog. eqs.

MeasB

[MeasBop, Set]∏

Yoneda
embedding

QBS

Function spaces (CCC).
Concrete (extensional).

Full subcat. of
separated functors

1. Higher-order fns.
2. Conditioning, prog. eqs.

MeasB

[MeasBop, Set]∏

Yoneda
embedding

QBS

SFinKer

Strong monad of
s-finite kernels

Full subcat. of
separated functors

1. Higher-order fns.
2. Conditioning, prog. eqs.

MeasB

[MeasBop, Set]∏

Yoneda
embedding

QBS

Full subcat. of
separated functors

SFinKer

1. Higher-order fns.
2. Conditioning, prog. eqs.

Big picture 2:
Random element first.

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

1. σ-algebras Σ⊆2Ω, Θ⊆2Χ

2. measure μ : Σ→[0,∞]
3. α-1(B)∈Σ for all B∈Θ

in measure theory

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

in measure theory

1. Σ⊆2Ω, Θ⊆2Χ

2. μ : Σ→[0,∞]

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

in measure theory

1. Σ⊆2Ω, Θ⊆2Χ

2. μ : Σ→[0,1]

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

1. Σ⊆2Ω, Θ⊆2Χ

2. μ : Σ→[0,1]

in measure theory

is a random element
if α-1(A)∈Σ for all A∈Θ

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

in quasi-Borel spaces

Random element α in X

α : ℝ → X

• X - set of values.

• ℝ - set of random seeds.

• Random seed generator.

in quasi-Borel spaces

1. ℝ as random source
2. Borel subsets 𝕭⊆2ℝ

2. M ⊆ [ℝ→X]

Random element α in X

α : ℝ → X

• X - set of values.

• ℝ - set of random seeds.

• Random seed generator.

in quasi-Borel spaces

1. ℝ as random source
2. Borel subsets 𝕭⊆2ℝ

2. M ⊆ [ℝ→X]

Random element α in X

α : ℝ → X

• X - set of values.

• ℝ - set of random seeds.

• Random seed generator.

in quasi-Borel spaces

1. ℝ as random source
2. Borel subsets 𝕭⊆2ℝ

3. M ⊆ [ℝ→X]

Random element α in X

α : ℝ → X

• X - set of values.

• ℝ - set of random seeds.

• Random seed generator.

in quasi-Borel spaces

1. ℝ as random source
2. Borel subsets 𝕭⊆2ℝ

3. M ⊆ [ℝ→X]

is a random variable
if α∈M

• Measure theory:

• Measurable space (X, Θ⊆2Χ).

• Random element is an induced concept.

• QBS:

• Quasi-Borel space (X, M⊆[ℝ→X]).

• M is the set of random elements.

Quasi-Borel spaces

• New axiomatisation of probability theory.

• Enabled us to generalise classical results in
probability theory such as de Finetti thm.

Try probabilistic PLs

Anglican:
http://www.robots.ox.ac.uk/~fwood/anglican/

WebPPL:
http://webppl.org/

