### **Graphical Linear Algebra** a specification language for linear algebra Pawel Sobocinski

based on joint work with Filippo Bonchi and Fabio Zanasi

# CONCUR

 My first CS conference: Concur 2001, Aalborg

**Bigraphical Reactive Systems** 

Robin Milner

University of Cambridge Computer Laboratory New Museums Site, Pembroke Street, Cambridge CB2 3QG, UK

Abstract A notion of *bigraph* is introduced as a model of mobile interaction. A bigraph consists of two independent structures: a *topograph* rep-

- My first talk: EXPRESS 2002, Brno (a Concur 2002, satellite workshop
- My first paper at Concur 2003, Marseille (with Bartek Klin)



BRICS University of Aaring, Dynmark



(Jean-Raymond Abrial : how theorem provers make you treat mathematics as a branch of software engineering)

This talk: how to see linear algebra as a branch of process algebra

### **implementations** ⊆ **specifications**

runnable, completely specified

non-deterministic, partially specified behaviour

#### functions ⊆ relations

single-valued, total non single-valued, non total

# string diagrams

- showing up in a growing number of recent CS papers
  - Abramsky, Duncan, Coecke, ... Categorical Quantum Foundations and Quantum Computation
  - Mellies, ... Logic, Game Semantics
  - Ghica, Jung, ... Digital Circuits
  - Baez, Bonchi, Erbele, Fong, S., Zanasi, ... Signal Flow Graphs, Control and Systems Theory
  - Coecke, Sadrzadeh, ... Computational Linguistics
  - ...



#### **1st Workshop on String Diagrams in Computation Logic and Physics**

Jericho Tavern, Oxford 8-9 September, 2017 (satellite of FSCD, next year satellite of CSL)

# linear algebra

- the most practical mathematical theory?
  - the engine room of systems and control theory, quantum computing, network theory, ...
  - mathematical physics and engineering relies on it: systems of nonlinear differential equations are solved with linear approximations
  - shows up in surprising places (Petri net invariants, PageRank is an eigenvector, SVD in data science and learning, ...)
- Graphical Linear Algebra linear algebra with string diagrams
  - focus on linear **relations** rather than on linear **maps**
  - GraphicalLinearAlgebra.net

# Plan

• String diagrams & diagrammatic reasoning

#### • what is it?

- why is it relevant for cs?
- Graphical Linear Algebra
- Fun stuff

## props

- A prop is a strict symmetric monoidal category with
  - strict means:  $\otimes$  is associative on the nose
  - objects = natural numbers
  - $m \otimes n := m + n$  (I will usually write  $m \oplus n$ )
- Simple examples:
  - permutations of finite sets
  - functions between finite sets
- prop homomorphism = identity on objects symmetric monoidal functor

# A string diagram



## Synchronising Composition





"C and D synchronise on I"

# Parallel composition

$$\frac{C: k \to I \qquad D: m \to n}{C \oplus D: k \oplus m \to I \oplus n}$$



"C and D in parallel"

## Perks of the notation

 $\frac{C: k \rightarrow l \qquad D: l \rightarrow m \qquad E: m \rightarrow n}{(C; D); E = C; (D; E): k \rightarrow n}$ 



 $(C \oplus D) \oplus E = C \oplus (D \oplus E) : m \oplus m' \oplus m'' \rightarrow n \oplus n' \oplus n''$ 



# More perks

#### $(A; B) \oplus (C; D) = (A \oplus C); (B \oplus D)$



# Diagrammatic reasoning $\begin{array}{c} c:m \rightarrow n \\ \hline l_m; c = c = c; l_n \end{array}$

 $(A \oplus I_r); (I_q \oplus B) = A \oplus B = (I_p \oplus B); (A \oplus I_s)$ 



# Symmetries

#### $\sigma_{m,n}: m \oplus n \rightarrow n \oplus m$











=

# Plan

- String diagrams & diagrammatic reasoning
  - what is it?
  - why is it relevant for cs?
- Graphical Linear Algebra
- Fun stuff

### (commutative) monoids and groups a la 1930s universal algebra - syntax

- (presentation of) algebraic theory
  - pair T = ( $\Sigma$ , E) of finite sets
- for commutative monoids:
  - signature  $\Sigma$ , arity:  $\Sigma \rightarrow \mathbf{N}$ 
    - · : 2
    - e:0
  - equations E (pairs of typed terms)
    - $\mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z}$
    - $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$
    - $x \cdot e = x$

- For abelian groups, additionally
  - signature: (-)<sup>-1</sup> : 1
  - equations:  $x \cdot x^{-1} = e$

### (commutative) monoids and groups a la universal algebra - semantics

- To give a **model** 
  - Pick carrier set X



- For every evaluation of variables  $\sigma$ : Var $\rightarrow$ X, each equation must hold
- So, e.g. a model of the algebraic theory of monoids is the same thing as a monoid, in the classical sense

### functorial semantics, 1960s

- Lawvere was not happy with universal algebra
  - too set theory specific
    - (e.g. topological groups morally should be a model)
  - too much ad hoc extraneous machinery
    - (e.g. countable set of variables, variable evaluation, etc.)
- Lawvere's 1963 doctoral thesis "Functorial semantics of algebraic theories" - universal algebra categorically

## Lawvere theories

- Given algebraic theory ( $\Sigma$ ,E), a category  $\mathcal{L}_{(\Sigma,E)}$  with
  - objects: the natural numbers
  - arrows from m to n:
    - n-tuples of terms that (possibly) use variables  $x_1, x_2, \ldots x_m$  modulo equations E
    - composition is substitution

• e.g. 
$$2 \xrightarrow{(x_1 \cdot x_2)} 1 \quad 2 \xrightarrow{(x_2 \cdot x_1)} 1 \quad 1 \xrightarrow{(e, x_1)} 2 \xrightarrow{(x_2 \cdot x_1)} 1 = 1 \xrightarrow{(x_1 \cdot e)} 1$$

- More concisely "free category with products on the data of an algebraic theory"
- any  $\mathcal{L}_{(\Sigma,E)}$  is a prop!

classical model = cartesian functor  $\mathcal{L} \rightarrow \mathbf{Set}$ 

### products in a Lawvere theory



### limitations of algebraic theories

• Copying and discarding **built in** 

$$2 \xrightarrow{(X_1)} 1 \qquad 2 \xrightarrow{(X_2)} 1 \qquad 1 \xrightarrow{(X_1, X_1)} 2$$

• Consequently, there are also no bona fide operations with *coarities* other than one

$$1 \xrightarrow{c} 2 = 1 \xrightarrow{(c_1, c_2)} 2$$

• But in quantum mechanics, computer science, and elsewhere we often need to be more careful with resources

# symmetric monoidal theories

- algebraic theory in the symmetric monoidal settings
- a symmetric monoidal theory is a pair of finite sets ( $\Sigma$ , E)
  - $\Sigma$  signature, arity :  $\Sigma \rightarrow N$ , coarity :  $\Sigma \rightarrow N$
  - E equations, pairs of string diagrams constructed from Σ, identity and symmetries

# symmetric monoidal theory of commutative monoids









### commutative monoid facts

- the following are isomorphic as props
  - prop of commutative monoids
  - prop of functions between finite sets

not isomorphic to the Lawvere theory of commutative monoids

# folk theorem

- A symmetric monoidal category **C** is cartesian iff
  - every object C∈C has a commutative comonoid Δ: C→C⊗C,
     c: C→I

- compatible with  $\otimes$  in the obvious way
- and every arrow  $f: m \rightarrow n$  of **C** is a comonoid homomorphism, i.e.



### Lawvere theories as SMTs













# Lawvere theory of commutative monoids as SMT



# Lawvere theory of abelian groups as an SMT



• e.g. the Hopf equation



is simply the SMT version of  $x \cdot x^{-1} = e$ 

- Lawvere theory of commutative monoids = Symmetric monoidal theory of (co)commutative bialgebra
- Lawvere theory of abelian groups = Symmetric monoidal theory of (co)commutative Hopf algebras

So bialgebras and Hopf algebras are, respectively, monoids and groups in a **resource sensitive** universe.

# Plan

- String diagrams & diagrammatic reasoning
  - what is it?
  - why is it relevant for cs?
- Graphical Linear Algebra
- Fun stuff

# Linear relation

- Definition. Suppose V, W are k-vector spaces. A linear relation R from V to W is a linear subspace of V×W
  - i.e.
  - $(0_{\vee}, 0_{\vee}) \in R$
  - if (v,w), (v',w')  $\in R$  then (v+v', w+w')  $\in R$
  - if (v,w)  $\in R$  and  $\lambda \in k$  then ( $\lambda v$ ,  $\lambda w$ )  $\in R$

# Why linear relations?

any m×n matrix A gives lin.
 relation { (x,Ax) | x∈k<sup>n</sup> }⊆
 k<sup>n</sup>×k<sup>m</sup>



the singleton (0, \*) is a linear relation ⊆ k<sup>m</sup> × k<sup>0</sup>



 composing gives the kernel of A



the set { (\*, x) | x ∈ k<sup>n</sup> } is a linear relation ⊆ k<sup>0</sup> × k<sup>n</sup>



 composing gives the image of A



# Graphical linear algebra

String diagrammatic syntax for linear relations with a sound and fully complete axiomatisation called Interacting Hopf Algebra

# The signature, pt 1 $\longrightarrow \left\{ \left(\begin{array}{c} x \\ y \end{array}\right), x+y \right\} \subseteq k^2 \times k$

+ mirror images

# The signature, pt 2



+ mirror images

#### interacting Hopf algebras

Bonchi, S., Zanasi, JPAA 2017



cf. Coecke, Duncan. Interacting quantum observables, NJP 2011

### (special) Frobenius monoids





## Theorem

### IH ≅ LinRel



extends this to on iso of 2-categories

Bonchi, Holland, Pavlovic, S. Refinement for signal flow graphs, CONCUR'17

# Plan

- String diagrams & diagrammatic reasoning
  - what is it?
  - why is it relevant for cs?
- Graphical Linear Algebra
- Fun stuff

### naturals as string diagrams

• naturals as syntactic sugar



• some easy lemmas



# correspondence with matrices



 in general, the ijth entry is the number of paths from the jth port on the left to the ith port on the right

### rational numbers







# division by 0

(fixing the deficiencies of the usual syntax)



Two ways of interpreting "0/0"



# projective arithmetic ++



 projective arithmetic identifies rationals with 1-dim spaces (lines) of Q<sup>2</sup>

• 
$$p \rightarrow \{ (x, px) \mid x \in \mathbf{Q} \}$$

- The extended system includes all the subspaces of Q<sup>2</sup>, in particular:
  - the unique zero dimensional space { (0, 0) }
  - the unique two dimensional space { (x,y) |  $x,y \in \mathbf{Q}$  }

# Linear subspaces

• **Observation**. Linear subspaces of kn are in 1-1 correspondence with string diagrams



Some examples  

$$\int \left( \left( \begin{pmatrix} x \\ y \end{pmatrix}, * \right) | x + 2y = 0 \right) \leq k^2 \times k^0$$

$$\int \left( \left( \begin{pmatrix} 1 \\ y \end{pmatrix}, * \right) | a \in k \right) \subset k^2 \times k^0$$

\_\_\_\_2

 $\left\{ \left( a \left( \begin{array}{c} 1\\2 \end{array} \right), * \right) \mid a \in k \right\} \subseteq k^2 \times k^0$ 

### Intersection and sum of spaces



### linear independence



# decomposition into linearly independent subspaces R and S



### Eigenvalues & eigenspaces

 V is an eigenspace of A: k<sup>n</sup> → k<sup>n</sup> with eigenvalue a∈k when:



# Spectral decomposition

 A has a spectral decomposition when we can find a decomposition of k<sup>n</sup> into eigenspaces V<sub>1</sub>, V<sub>2</sub>, ..., V<sub>m</sub> and eigenvalues α<sub>1</sub>, α<sub>2</sub>, ..., α<sub>m</sub>











$$\begin{pmatrix} 5 & -1 \\ -\frac{5}{2} & -2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -\frac{1}{2} & 2 \end{pmatrix}^{-1} = \frac{1}{5} \begin{pmatrix} 19 & -12 \\ -12 & 1 \end{pmatrix}$$

# Bibliography

- Bonchi, S., Zanasi Interacting bialgebras are Frobenius, FoSSaCS '14
- Bonchi, S., Zanasi Interacting Hopf algebras, J Pure Applied Algebra 221:144–184, 2017
- Bonchi, S., Zanasi The calculus of signal flow diagrams I: Linear Relations on Streams, Inf Comput 252:2–29, 2017
- Bonchi, S., Zanasi A categorical semantics of signal flow graphs, CONCUR '14
- Bonchi, S., Zanasi Full abstraction for signal flow graphs, PoPL '16
- Zanasi Interacting Hopf Algebras: The theory of linear systems, PhD Thesis, ENS Lyon, 2015
- Bonchi, S., Zanasi Lawvere Theories as composed PROPs, CMCS '16
- Fong, Rapisarda, S. A categorical approach to open and interconnected dynamical systems, LiCS '16
- Bonchi, Gadducci, Kissinger, S. Rewriting modulo symmetric monoidal structure, LiCS '16
- Bonchi, Gadducci, Kissinger, S. Confluence of graph rewriting with interfaces, ESOP '17
- Bonchi, Holland, Pavlovic, S Refinement for signal flow graphs, CONCUR '17
- Bonchi, Pavlovic, S. Functorial semantics of Frobenius theories (in preparation)

#### **GraphicalLinearAlgebra.net**