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CONCUR
• My first CS conference: Concur 2001, 

Aalborg


• My first talk: EXPRESS 2002, Brno (a 
Concur 2002, satellite workshop


• My first paper at Concur 2003, Marseille  
(with Bartek Klin)



Concur 
(process algebra)

string diagrams linear algebra

(Jean-Raymond Abrial : how theorem provers make you treat  
mathematics as a branch of software engineering)

This talk: how to see linear algebra as a branch of process algebra



implementations ⊆ specifications

functions ⊆ relations

non-deterministic, 
partially specified 

behaviour
runnable, completely 

specified

single-valued, 
total

non single-valued, 
non total



string diagrams
• showing up in a growing number of recent CS papers


• Abramsky, Duncan, Coecke, … - Categorical Quantum Foundations and Quantum Computation 


• Mellies, … - Logic, Game Semantics


• Ghica, Jung, … - Digital Circuits


• Baez, Bonchi, Erbele, Fong, S., Zanasi, … - Signal Flow Graphs, Control and Systems Theory


• Coecke, Sadrzadeh, … - Computational Linguistics


• …

1st Workshop on String Diagrams 
in Computation Logic and Physics 

Jericho Tavern, Oxford

8-9 September, 2017


(satellite of FSCD,

next year satellite of CSL)



linear algebra
• the most practical mathematical theory?


• the engine room of systems and control theory, quantum computing, 
network theory, …


• mathematical physics and engineering relies on it: systems of nonlinear 
differential equations are solved with linear approximations


• shows up in surprising places (Petri net invariants, PageRank is an 
eigenvector, SVD in data science and learning, …)


• Graphical Linear Algebra - linear algebra with string diagrams


• focus on linear relations rather than on linear maps


• GraphicalLinearAlgebra.net 

http://GraphicalLinearAlgebra.net


Plan

• String diagrams & diagrammatic reasoning


• what is it? 

• why is it relevant for cs?


• Graphical Linear Algebra


• Fun stuff



props
• A prop is a strict symmetric monoidal category with 


• strict means: ⊗ is associative on the nose


• objects = natural numbers


• m⊗n := m + n (I will usually write m⊕n)


• Simple examples: 


• permutations of finite sets


• functions between finite sets 


• prop homomorphism = identity on objects symmetric monoidal functor



A string diagram

C
m n



Synchronising Composition

C : k → l      D: l → m
C ; D : k → m

C
k l

D
m

“C and D synchronise on l”



Parallel composition

C : k → l      D: m → n
C ⊕ D : k ⊕ m → l ⊕ n

C
k l

m
D

n

“C and D in parallel”



Perks of the notation
C : k → l D : l → m E : m → n 

(C ; D) ; E = C ; (D ; E) : k → n

k l mC D E n

C : m → n D : m’ → n’ E : m’’ → n’’ 

(C ⊕ D) ⊕ E = C ⊕ (D ⊕ E) : m ⊕ m’⊕ m’’ → n ⊕ n’⊕ n’’

C

D

E

m

m'

m''

n

n'

n''



More perks

A B

C D

(A ; B) ⊕ (C ; D) = (A ⊕ C) ; (B ⊕ D)



Diagrammatic reasoning
C : m → n

Im ; C = C = C ; In

= C =C Cm n m n m n

( A ⊕ Ir ) ; (Iq ⊕ B) = A ⊕ B = (Ip ⊕ B) ; (A ⊕ Is)

A

B

= =

A

B

A

B

p q

r s

p q

r s

p q

r s



Symmetries
σm,n: m⊕n → n⊕m

m

mn

n

C

n

np

q C
n

np

q
=

C
p

qm

m

C

p

qm

m

=



Plan

• String diagrams & diagrammatic reasoning


• what is it?


• why is it relevant for cs? 

• Graphical Linear Algebra


• Fun stuff



(commutative) monoids and groups 
a la 1930s universal algebra - syntax

• (presentation of) algebraic theory


•  pair T = (Σ, E) of finite sets


• for commutative monoids:


• signature Σ, arity: Σ → N


• ⋅ : 2 


• e : 0 


• equations E (pairs of typed terms)


• x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z


• x ⋅ y = y ⋅ x


• x⋅e = x

• For abelian groups, additionally


• signature: (-)-1 : 1


• equations: x ⋅ x-1 = e



(commutative) monoids and groups 
a la universal algebra - semantics

• To give a model 


• Pick carrier set X


• ⋅ : 2                   ⋅ : X2 → X


• e : 0                  e : X0 → X 


• (-)-1 : 1              (-)-1: X1 → X


• For every evaluation of variables σ: Var→X, each equation must hold 


• So, e.g. a model of the algebraic theory of monoids is the same 
thing as a monoid, in the classical sense



functorial semantics, 1960s

• Lawvere was not happy with universal algebra


• too set theory specific 


• (e.g. topological groups morally should be a model)


• too much ad hoc extraneous machinery


• (e.g. countable set of variables, variable evaluation, etc.)


• Lawvere’s 1963 doctoral thesis “Functorial semantics of 
algebraic theories” - universal algebra categorically



Lawvere theories
• Given algebraic theory (Σ,E), a category L(Σ,E) with


• objects: the natural numbers


• arrows from m to n:


• n-tuples of terms that (possibly) use variables x1, x2, … xm modulo equations E


• composition is substitution


• e.g. 


• More concisely - “free category with products on the data of an algebraic theory”


• any L(Σ,E) is a prop!

classical model = cartesian functor L → Set 

2 1(x1⋅x2) 2 1(x2⋅x1) 1 2
(e, x1)

1
(x2⋅x1)

= 1 1
(x1⋅e)



products in a Lawvere theory

m+nm n

k

(x1,x2, …, xm) (xm+1,xm+2, …, xm+n)

(f1,f2,…,fm)
(g1,g2,…,gn)

(f1,…,fm,g1,…,gn)



limitations of algebraic theories
• Copying and discarding built in

• Consequently, there are also no bona fide operations with coarities 
other than one 

• But in quantum mechanics, computer science, and elsewhere we 
often need to be more careful with resources

1 2(x1, x1)2 1(x1) 2 1(x2)

1 2c = 1 2(c1,c2)



symmetric monoidal 
theories

• algebraic theory in the symmetric monoidal settings


• a symmetric monoidal theory is a pair of finite sets (Σ, E)


• Σ signature, arity : Σ → N, coarity : Σ → N


• E equations, pairs of string diagrams constructed from 
Σ, identity and symmetries 



symmetric monoidal theory 
of commutative monoids

: (2, 1) : (0, 1)

=

=

=



commutative monoid facts

• the following are isomorphic as props


• prop of commutative monoids


• prop of functions between finite sets


• not isomorphic to the Lawvere theory of commutative 
monoids



folk theorem
• A symmetric monoidal category C is cartesian iff 


• every object C∈C has a commutative comonoid Δ: C→C⊗C,         
c: C→I


• compatible with ⊗ in the obvious way


• and every arrow f : m→n of C is a comonoid homomorphism, i.e.

== =

= f
m n f

f

m
n

n f
m n

= 
n



Lawvere theories as SMTs

σ... (σ ∈ Σ)

== =

σ...
= ...

σ

σ...

... σ...
= ...

E + 



Lawvere theory of 
commutative monoids as SMT

=

=

=

=

=

=

=

= =

=



Lawvere theory of abelian 
groups as an SMT

=

=

=

=

=

=

=

= =

=

=

=

=



• e.g. the Hopf equation


is simply the SMT version of x⋅x-1 = e


• Lawvere theory of commutative monoids = Symmetric 
monoidal theory of (co)commutative bialgebra


• Lawvere theory of abelian groups = Symmetric monoidal 
theory of (co)commutative Hopf algebras

So bialgebras and Hopf algebras are, respectively, 
monoids and groups in a resource sensitive universe.

=



Plan

• String diagrams & diagrammatic reasoning


• what is it?


• why is it relevant for cs?


• Graphical Linear Algebra 

• Fun stuff



Linear relation

• Definition. Suppose V, W are k-vector spaces. A linear 
relation R from V to W is a linear subspace of V×W


• i.e. 


• (0V,0W) ∈ R


• if (v,w), (v’,w’) ∈ R then (v+v’, w+w’) ∈ R


• if (v,w) ∈ R and λ∈k then (λv, λw) ∈ R



Why linear relations?
• any m×n matrix A gives lin. 

relation { (x,Ax) | x∈kn }⊆ 
kn×km


• the singleton (0, *) is a linear 
relation ⊆ km × k0 


• composing gives the kernel 
of A

An m

m

An m

• the set { (*, x) | x∈ kn } is a 
linear relation ⊆ k0 × kn


• composing gives the image 
of A

An m

n



Graphical linear algebra

String diagrammatic syntax for linear relations with 
 a sound and fully complete axiomatisation called 

Interacting Hopf Algebra



The signature, pt 1

⇢✓
x

y

◆
, x+ y

�
✓ k

2 ⇥ k

{⇤, 0} ✓ k0 ⇥ k1

+ mirror images



The signature, pt 2

⇢
x,

✓
x

x

◆�
✓ k ⇥ k

2

{x, ⇤} ✓ k ⇥ k

0

+ mirror images



interacting Hopf algebras

=

=

=

=

=

=

=

=

=

=

=

=

special Frobenius

special Frobenius

HopfHopf

=

=

p p =

p p =

(p ≠ 0) 

cf. Coecke, Duncan. Interacting quantum observables, NJP 2011

Bonchi, S., Zanasi, JPAA 2017



(special) Frobenius monoids

=

=



Theorem

IH ≅ LinRel 

≤ 
extends this to on iso of 2-categories

Bonchi, Holland, Pavlovic, S. Refinement for signal flow graphs, CONCUR’17



Plan

• String diagrams & diagrammatic reasoning


• what is it?


• why is it relevant for cs?


• Graphical Linear Algebra


• Fun stuff



naturals as string diagrams

• naturals as syntactic sugar 

• some easy lemmas

0 :=

k+1 :=
k

m
m

m
=

m

m
m=

m

n
m+n=

m n nm=



correspondence with 
matrices

• in general, the ijth entry is the number of paths from the 
jth port on the left to the ith port on the right

2

3

4

✓
1 2
3 4

◆



rational numbers
p qp/q   :=

p q r s = p r sq

= rp sq

p q

r s
=

p q

r s

s s

q q

sp sq

qr qs

sp

qr
sq

=

=

= sp+qr sq

e.g. 2/3 is



division by 0

0 =

0 =

0 0 =

0 0 =

Two ways of interpreting “0/0”

(fixing the deficiencies of the usual syntax)



projective arithmetic ++

0
(x, 1/2 x)

(x, 2x)

• projective arithmetic identifies rationals with 1-dim 
spaces (lines) of Q2 

• p -> { (x,px) | x ∈ Q } 

• ∞ : { (0, x) | x ∈ Q } 

• The extended system includes all the subspaces of 
Q2, in particular: 

• the unique zero dimensional space { (0, 0) } 

• the unique two dimensional space { (x,y) | x,y ∈ Q }



Linear subspaces

• Observation. Linear subspaces of kn are in 1-1 
correspondence with string diagrams

Rn



Some examples

2

⇢✓✓
x

y

◆
, ⇤

◆
| x+ 2y = 0

�
✓ k

2 ⇥ k

0

2

⇢✓
a

✓
1
2

◆
, ⇤

◆
| a 2 k

�
✓ k2 ⇥ k0



Intersection and sum of spaces

R

S

intersection

R

S

sum



linear independence

R

S

=

decomposition into linearly 
independent subspaces R and S

R

S

=

R

S

=



Eigenvalues & eigenspaces

• V is an eigenspace of A: kn → kn with eigenvalue a∈k 
when:

An n

V

=

αn n

V



Spectral decomposition
• A has a spectral decomposition when we can find a 

decomposition of kn into eigenspaces V1, V2, …, Vm and 
eigenvalues α1, α2, …, αm

A =

α1

V1

...

αm

Vm



2

2

5

5

-1

-1



-2

2

5

5

-1

-1



5

5

-1

-2

-2

-2

2



5

5

-1

-2

-2
-2

2

✓
5 �1
� 5

2 �2

◆✓
1 1
� 1

2 2

◆�1

=
1

5

✓
19 �12
�12 1

◆
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